telegraf/metric/series_grouper.go

87 lines
2.0 KiB
Go
Raw Normal View History

2019-02-20 21:23:59 +00:00
package metric
import (
"hash/fnv"
"io"
"sort"
"strconv"
"time"
"github.com/influxdata/telegraf"
)
// NewSeriesGrouper returns a type that can be used to group fields by series
// and time, so that fields which share these values will be combined into a
// single telegraf.Metric.
//
// This is useful to build telegraf.Metric's when all fields for a series are
// not available at once.
//
// ex:
// - cpu,host=localhost usage_time=42
// - cpu,host=localhost idle_time=42
// + cpu,host=localhost idle_time=42,usage_time=42
func NewSeriesGrouper() *SeriesGrouper {
return &SeriesGrouper{
metrics: make(map[uint64]telegraf.Metric),
ordered: []telegraf.Metric{},
}
}
type SeriesGrouper struct {
metrics map[uint64]telegraf.Metric
ordered []telegraf.Metric
}
// Add adds a field key and value to the series.
func (g *SeriesGrouper) Add(
measurement string,
tags map[string]string,
tm time.Time,
field string,
fieldValue interface{},
) error {
var err error
id := groupID(measurement, tags, tm)
metric := g.metrics[id]
if metric == nil {
metric, err = New(measurement, tags, map[string]interface{}{field: fieldValue}, tm)
if err != nil {
return err
}
g.metrics[id] = metric
g.ordered = append(g.ordered, metric)
} else {
metric.AddField(field, fieldValue)
}
return nil
}
// Metrics returns the metrics grouped by series and time.
func (g *SeriesGrouper) Metrics() []telegraf.Metric {
return g.ordered
}
func groupID(measurement string, tags map[string]string, tm time.Time) uint64 {
h := fnv.New64a()
h.Write([]byte(measurement))
h.Write([]byte("\n"))
taglist := make([]*telegraf.Tag, 0, len(tags))
for k, v := range tags {
taglist = append(taglist,
&telegraf.Tag{Key: k, Value: v})
}
sort.Slice(taglist, func(i, j int) bool { return taglist[i].Key < taglist[j].Key })
for _, tag := range taglist {
h.Write([]byte(tag.Key))
h.Write([]byte("\n"))
h.Write([]byte(tag.Value))
h.Write([]byte("\n"))
}
h.Write([]byte("\n"))
io.WriteString(h, strconv.FormatInt(tm.UnixNano(), 10))
return h.Sum64()
}