Performance refactor of running_output buffers

closes #914
closes #967
This commit is contained in:
Cameron Sparr 2016-04-25 17:49:06 -06:00
parent 1c4043ab39
commit 4de75ce621
7 changed files with 587 additions and 206 deletions

View File

@ -2,9 +2,18 @@
### Release Notes
- New [agent] configuration option: `metric_batch_size`. This option tells
telegraf the maximum batch size to allow to accumulate before sending a flush
to the configured outputs. `metric_buffer_limit` now refers to the absolute
maximum number of metrics that will accumulate before metrics are dropped.
- There is no longer an option to
`flush_buffer_when_full`, this is now the default and only behavior of telegraf.
- **Breaking Change**: docker plugin tags. The cont_id tag no longer exists, it
will now be a field, and be called container_id. Additionally, cont_image and
cont_name are being renamed to container_image and container_name.
- **Breaking Change**: docker plugin measurements. The `docker_cpu`, `docker_mem`,
`docker_blkio` and `docker_net` measurements are being renamed to
`docker_container_cpu`, `docker_container_mem`, `docker_container_blkio` and
@ -16,15 +25,19 @@ So adding "container" to each metric will:
(1) make it more clear that these metrics are per-container, and
(2) allow users to easily drop per-container metrics if cardinality is an
issue (`namedrop = ["docker_container_*"]`)
- `tagexclude` and `taginclude` are now available, which can be used to remove
tags from measurements on inputs and outputs. See
[the configuration doc](https://github.com/influxdata/telegraf/blob/master/docs/CONFIGURATION.md)
for more details.
- **Measurement filtering:** All measurement filters now match based on glob
only. Previously there was an undocumented behavior where filters would match
based on _prefix_ in addition to globs. This means that a filter like
`fielddrop = ["time_"]` will need to be changed to `fielddrop = ["time_*"]`
- **datadog**: measurement and field names will no longer have `_` replaced by `.`
- The following plugins have changed their tags to _not_ overwrite the host tag:
- cassandra: `host -> cassandra_host`
- disque: `host -> disque_host`
@ -42,6 +55,8 @@ based on _prefix_ in addition to globs. This means that a filter like
- [#1072](https://github.com/influxdata/telegraf/pull/1072): New Input Plugin: filestat.
- [#1066](https://github.com/influxdata/telegraf/pull/1066): Replication lag metrics for MongoDB input plugin
- [#1086](https://github.com/influxdata/telegraf/pull/1086): Ability to specify AWS keys in config file. Thanks @johnrengleman!
- [#1096](https://github.com/influxdata/telegraf/pull/1096): Performance refactor of running output buffers.
- [#967](https://github.com/influxdata/telegraf/issues/967): Buffer logging improvements.
### Bugfixes
@ -55,6 +70,7 @@ based on _prefix_ in addition to globs. This means that a filter like
- [#1078](https://github.com/influxdata/telegraf/issues/1078): Use default AWS credential chain.
- [#1070](https://github.com/influxdata/telegraf/issues/1070): SQL Server input. Fix datatype conversion.
- [#1089](https://github.com/influxdata/telegraf/issues/1089): Fix leaky TCP connections in phpfpm plugin.
- [#914](https://github.com/influxdata/telegraf/issues/914): Telegraf can drop metrics on full buffers.
## v0.12.1 [2016-04-14]

View File

@ -30,15 +30,13 @@
## ie, if interval="10s" then always collect on :00, :10, :20, etc.
round_interval = true
## Telegraf will send metrics to output in batch of at
## Telegraf will send metrics to outputs in batches of at
## most metric_batch_size metrics.
metric_batch_size = 1000
## Telegraf will cache metric_buffer_limit metrics for each output, and will
## flush this buffer on a successful write. This should be a multiple of
## metric_batch_size and could not be less than 2 times metric_batch_size
## For failed writes, telegraf will cache metric_buffer_limit metrics for each
## output, and will flush this buffer on a successful write. Oldest metrics
## are dropped first when this buffer fills.
metric_buffer_limit = 10000
## Flush the buffer whenever full, regardless of flush_interval.
flush_buffer_when_full = true
## Collection jitter is used to jitter the collection by a random amount.
## Each plugin will sleep for a random time within jitter before collecting.
@ -151,6 +149,15 @@
# ## Amazon REGION
# region = 'us-east-1'
#
# ## Amazon Credentials
# ## Credentials are loaded in the following order
# ## 1) explicit credentials from 'access_key' and 'secret_key'
# ## 2) environment variables
# ## 3) shared credentials file
# ## 4) EC2 Instance Profile
# #access_key = ""
# #secret_key = ""
#
# ## Namespace for the CloudWatch MetricDatums
# namespace = 'InfluxData/Telegraf'
@ -243,6 +250,16 @@
# [[outputs.kinesis]]
# ## Amazon REGION of kinesis endpoint.
# region = "ap-southeast-2"
#
# ## Amazon Credentials
# ## Credentials are loaded in the following order
# ## 1) explicit credentials from 'access_key' and 'secret_key'
# ## 2) environment variables
# ## 3) shared credentials file
# ## 4) EC2 Instance Profile
# #access_key = ""
# #secret_key = ""
#
# ## Kinesis StreamName must exist prior to starting telegraf.
# streamname = "StreamName"
# ## PartitionKey as used for sharding data.
@ -457,6 +474,15 @@
# ## Amazon Region
# region = 'us-east-1'
#
# ## Amazon Credentials
# ## Credentials are loaded in the following order
# ## 1) explicit credentials from 'access_key' and 'secret_key'
# ## 2) environment variables
# ## 3) shared credentials file
# ## 4) EC2 Instance Profile
# #access_key = ""
# #secret_key = ""
#
# ## Requested CloudWatch aggregation Period (required - must be a multiple of 60s)
# period = '1m'
#
@ -588,8 +614,14 @@
# [[inputs.filestat]]
# ## Files to gather stats about.
# ## These accept standard unix glob matching rules, but with the addition of
# ## ** as a "super asterisk". See https://github.com/gobwas/glob.
# files = ["/etc/telegraf/telegraf.conf", "/var/log/**.log"]
# ## ** as a "super asterisk". ie:
# ## "/var/log/**.log" -> recursively find all .log files in /var/log
# ## "/var/log/*/*.log" -> find all .log files with a parent dir in /var/log
# ## "/var/log/apache.log" -> just tail the apache log file
# ##
# ## See https://github.com/gobwas/glob for more examples
# ##
# files = ["/var/log/**.log"]
# ## If true, read the entire file and calculate an md5 checksum.
# md5 = false
@ -980,6 +1012,11 @@
# ## databases are gathered.
# ## databases = ["app_production", "testing"]
# #
# # outputaddress = "db01"
# ## A custom name for the database that will be used as the "server" tag in the
# ## measurement output. If not specified, a default one generated from
# ## the connection address is used.
# #
# ## Define the toml config where the sql queries are stored
# ## New queries can be added, if the withdbname is set to true and there is no
# ## databases defined in the 'databases field', the sql query is ended by a
@ -990,24 +1027,28 @@
# ## because the databases variable was set to ['postgres', 'pgbench' ] and the
# ## withdbname was true. Be careful that if the withdbname is set to false you
# ## don't have to define the where clause (aka with the dbname) the tagvalue
# ## field is used to define custom tags (separated by comas)
# ## field is used to define custom tags (separated by commas)
# ## The optional "measurement" value can be used to override the default
# ## output measurement name ("postgresql").
# #
# ## Structure :
# ## [[inputs.postgresql_extensible.query]]
# ## sqlquery string
# ## version string
# ## withdbname boolean
# ## tagvalue string (coma separated)
# ## tagvalue string (comma separated)
# ## measurement string
# [[inputs.postgresql_extensible.query]]
# sqlquery="SELECT * FROM pg_stat_database"
# version=901
# withdbname=false
# tagvalue=""
# measurement=""
# [[inputs.postgresql_extensible.query]]
# sqlquery="SELECT * FROM pg_stat_bgwriter"
# version=901
# withdbname=false
# tagvalue=""
# tagvalue="postgresql.stats"
# # Read metrics from one or many PowerDNS servers
@ -1379,6 +1420,28 @@
# percentile_limit = 1000
# # Stream a log file, like the tail -f command
# [[inputs.tail]]
# ## files to tail.
# ## These accept standard unix glob matching rules, but with the addition of
# ## ** as a "super asterisk". ie:
# ## "/var/log/**.log" -> recursively find all .log files in /var/log
# ## "/var/log/*/*.log" -> find all .log files with a parent dir in /var/log
# ## "/var/log/apache.log" -> just tail the apache log file
# ##
# ## See https://github.com/gobwas/glob for more examples
# ##
# files = ["/var/mymetrics.out"]
# ## Read file from beginning.
# from_beginning = false
#
# ## Data format to consume.
# ## Each data format has it's own unique set of configuration options, read
# ## more about them here:
# ## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
# data_format = "influx"
# # Generic TCP listener
# [[inputs.tcp_listener]]
# ## Address and port to host TCP listener on

77
internal/buffer/buffer.go Normal file
View File

@ -0,0 +1,77 @@
package buffer
import (
"github.com/influxdata/telegraf"
)
// Buffer is an object for storing metrics in a circular buffer.
type Buffer struct {
buf chan telegraf.Metric
// total dropped metrics
drops int
// total metrics added
total int
}
// NewBuffer returns a Buffer
// size is the maximum number of metrics that Buffer will cache. If Add is
// called when the buffer is full, then the oldest metric(s) will be dropped.
func NewBuffer(size int) *Buffer {
return &Buffer{
buf: make(chan telegraf.Metric, size),
}
}
// IsEmpty returns true if Buffer is empty.
func (b *Buffer) IsEmpty() bool {
return len(b.buf) == 0
}
// Len returns the current length of the buffer.
func (b *Buffer) Len() int {
return len(b.buf)
}
// Drops returns the total number of dropped metrics that have occured in this
// buffer since instantiation.
func (b *Buffer) Drops() int {
return b.drops
}
// Total returns the total number of metrics that have been added to this buffer.
func (b *Buffer) Total() int {
return b.total
}
// Add adds metrics to the buffer.
func (b *Buffer) Add(metrics ...telegraf.Metric) {
for i, _ := range metrics {
b.total++
select {
case b.buf <- metrics[i]:
default:
b.drops++
<-b.buf
b.buf <- metrics[i]
}
}
}
// Batch returns a batch of metrics of size batchSize.
// the batch will be of maximum length batchSize. It can be less than batchSize,
// if the length of Buffer is less than batchSize.
func (b *Buffer) Batch(batchSize int) []telegraf.Metric {
n := min(len(b.buf), batchSize)
out := make([]telegraf.Metric, n)
for i := 0; i < n; i++ {
out[i] = <-b.buf
}
return out
}
func min(a, b int) int {
if b < a {
return b
}
return a
}

View File

@ -0,0 +1,94 @@
package buffer
import (
"testing"
"github.com/influxdata/telegraf"
"github.com/influxdata/telegraf/testutil"
"github.com/stretchr/testify/assert"
)
var metricList = []telegraf.Metric{
testutil.TestMetric(2, "mymetric1"),
testutil.TestMetric(1, "mymetric2"),
testutil.TestMetric(11, "mymetric3"),
testutil.TestMetric(15, "mymetric4"),
testutil.TestMetric(8, "mymetric5"),
}
func BenchmarkAddMetrics(b *testing.B) {
buf := NewBuffer(10000)
m := testutil.TestMetric(1, "mymetric")
for n := 0; n < b.N; n++ {
buf.Add(m)
}
}
func TestNewBufferBasicFuncs(t *testing.T) {
b := NewBuffer(10)
assert.True(t, b.IsEmpty())
assert.Zero(t, b.Len())
assert.Zero(t, b.Drops())
assert.Zero(t, b.Total())
m := testutil.TestMetric(1, "mymetric")
b.Add(m)
assert.False(t, b.IsEmpty())
assert.Equal(t, b.Len(), 1)
assert.Equal(t, b.Drops(), 0)
assert.Equal(t, b.Total(), 1)
b.Add(metricList...)
assert.False(t, b.IsEmpty())
assert.Equal(t, b.Len(), 6)
assert.Equal(t, b.Drops(), 0)
assert.Equal(t, b.Total(), 6)
}
func TestDroppingMetrics(t *testing.T) {
b := NewBuffer(10)
// Add up to the size of the buffer
b.Add(metricList...)
b.Add(metricList...)
assert.False(t, b.IsEmpty())
assert.Equal(t, b.Len(), 10)
assert.Equal(t, b.Drops(), 0)
assert.Equal(t, b.Total(), 10)
// Add 5 more and verify they were dropped
b.Add(metricList...)
assert.False(t, b.IsEmpty())
assert.Equal(t, b.Len(), 10)
assert.Equal(t, b.Drops(), 5)
assert.Equal(t, b.Total(), 15)
}
func TestGettingBatches(t *testing.T) {
b := NewBuffer(20)
// Verify that the buffer returned is smaller than requested when there are
// not as many items as requested.
b.Add(metricList...)
batch := b.Batch(10)
assert.Len(t, batch, 5)
// Verify that the buffer is now empty
assert.True(t, b.IsEmpty())
assert.Zero(t, b.Len())
assert.Zero(t, b.Drops())
assert.Equal(t, b.Total(), 5)
// Verify that the buffer returned is not more than the size requested
b.Add(metricList...)
batch = b.Batch(3)
assert.Len(t, batch, 3)
// Verify that buffer is not empty
assert.False(t, b.IsEmpty())
assert.Equal(t, b.Len(), 2)
assert.Equal(t, b.Drops(), 0)
assert.Equal(t, b.Total(), 10)
}

View File

@ -188,15 +188,13 @@ var header = `# Telegraf Configuration
## ie, if interval="10s" then always collect on :00, :10, :20, etc.
round_interval = true
## Telegraf will send metrics to output in batch of at
## Telegraf will send metrics to outputs in batches of at
## most metric_batch_size metrics.
metric_batch_size = 1000
## Telegraf will cache metric_buffer_limit metrics for each output, and will
## flush this buffer on a successful write. This should be a multiple of
## metric_batch_size and could not be less than 2 times metric_batch_size
## For failed writes, telegraf will cache metric_buffer_limit metrics for each
## output, and will flush this buffer on a successful write. Oldest metrics
## are dropped first when this buffer fills.
metric_buffer_limit = 10000
## Flush the buffer whenever full, regardless of flush_interval.
flush_buffer_when_full = true
## Collection jitter is used to jitter the collection by a random amount.
## Each plugin will sleep for a random time within jitter before collecting.
@ -535,14 +533,8 @@ func (c *Config) addOutput(name string, table *ast.Table) error {
return err
}
ro := internal_models.NewRunningOutput(name, output, outputConfig)
if c.Agent.MetricBatchSize > 0 {
ro.MetricBatchSize = c.Agent.MetricBatchSize
}
if c.Agent.MetricBufferLimit > 0 {
ro.MetricBufferLimit = c.Agent.MetricBufferLimit
}
ro.FlushBufferWhenFull = c.Agent.FlushBufferWhenFull
ro := internal_models.NewRunningOutput(name, output, outputConfig,
c.Agent.MetricBatchSize, c.Agent.MetricBufferLimit)
c.Outputs = append(c.Outputs, ro)
return nil
}

View File

@ -2,14 +2,13 @@ package internal_models
import (
"log"
"sync"
"time"
"github.com/influxdata/telegraf"
"github.com/influxdata/telegraf/internal/buffer"
)
const (
// Default size of metrics batch size.
DEFAULT_METRIC_BATCH_SIZE = 1000
@ -17,40 +16,40 @@ const (
DEFAULT_METRIC_BUFFER_LIMIT = 10000
)
// tmpmetrics point to batch of metrics ready to be wrote to output.
// readI point to the oldest batch of metrics (the first to sent to output). It
// may point to nil value if tmpmetrics is empty.
// writeI point to the next slot to buffer a batch of metrics is output fail to
// write.
// RunningOutput contains the output configuration
type RunningOutput struct {
Name string
Output telegraf.Output
Config *OutputConfig
Quiet bool
MetricBufferLimit int
MetricBatchSize int
FlushBufferWhenFull bool
Name string
Output telegraf.Output
Config *OutputConfig
Quiet bool
MetricBufferLimit int
MetricBatchSize int
metrics []telegraf.Metric
tmpmetrics []([]telegraf.Metric)
writeI int
readI int
sync.Mutex
metrics *buffer.Buffer
failMetrics *buffer.Buffer
}
func NewRunningOutput(
name string,
output telegraf.Output,
conf *OutputConfig,
batchSize int,
bufferLimit int,
) *RunningOutput {
if bufferLimit == 0 {
bufferLimit = DEFAULT_METRIC_BUFFER_LIMIT
}
if batchSize == 0 {
batchSize = DEFAULT_METRIC_BATCH_SIZE
}
ro := &RunningOutput{
Name: name,
metrics: make([]telegraf.Metric, 0),
metrics: buffer.NewBuffer(batchSize),
failMetrics: buffer.NewBuffer(bufferLimit),
Output: output,
Config: conf,
MetricBufferLimit: DEFAULT_METRIC_BUFFER_LIMIT,
MetricBatchSize: DEFAULT_METRIC_BATCH_SIZE,
MetricBufferLimit: bufferLimit,
MetricBatchSize: batchSize,
}
return ro
}
@ -63,19 +62,6 @@ func (ro *RunningOutput) AddMetric(metric telegraf.Metric) {
return
}
}
ro.Lock()
defer ro.Unlock()
if ro.tmpmetrics == nil {
size := ro.MetricBufferLimit / ro.MetricBatchSize
// ro.metrics already contains one batch
size = size - 1
if size < 1 {
size = 1
}
ro.tmpmetrics = make([]([]telegraf.Metric), size)
}
// Filter any tagexclude/taginclude parameters before adding metric
if len(ro.Config.Filter.TagExclude) != 0 || len(ro.Config.Filter.TagInclude) != 0 {
@ -90,69 +76,64 @@ func (ro *RunningOutput) AddMetric(metric telegraf.Metric) {
metric, _ = telegraf.NewMetric(name, tags, fields, t)
}
if len(ro.metrics) < ro.MetricBatchSize {
ro.metrics = append(ro.metrics, metric)
} else {
flushSuccess := true
if ro.FlushBufferWhenFull {
err := ro.write(ro.metrics)
if err != nil {
log.Printf("ERROR writing full metric buffer to output %s, %s",
ro.Name, err)
flushSuccess = false
}
} else {
flushSuccess = false
ro.metrics.Add(metric)
if ro.metrics.Len() == ro.MetricBatchSize {
batch := ro.metrics.Batch(ro.MetricBatchSize)
err := ro.write(batch)
if err != nil {
ro.failMetrics.Add(batch...)
}
if !flushSuccess {
if ro.tmpmetrics[ro.writeI] != nil && ro.writeI == ro.readI {
log.Printf("WARNING: overwriting cached metrics, you may want to " +
"increase the metric_buffer_limit setting in your [agent] " +
"config if you do not wish to overwrite metrics.\n")
ro.readI = (ro.readI + 1) % cap(ro.tmpmetrics)
}
ro.tmpmetrics[ro.writeI] = ro.metrics
ro.writeI = (ro.writeI + 1) % cap(ro.tmpmetrics)
}
ro.metrics = make([]telegraf.Metric, 0)
ro.metrics = append(ro.metrics, metric)
}
}
// Write writes all cached points to this output.
func (ro *RunningOutput) Write() error {
ro.Lock()
defer ro.Unlock()
if ro.tmpmetrics == nil {
size := ro.MetricBufferLimit / ro.MetricBatchSize
// ro.metrics already contains one batch
size = size - 1
if size < 1 {
size = 1
}
ro.tmpmetrics = make([]([]telegraf.Metric), size)
if !ro.Quiet {
log.Printf("Output [%s] buffer fullness: %d / %d metrics. "+
"Total gathered metrics: %d. Total dropped metrics: %d.",
ro.Name,
ro.failMetrics.Len()+ro.metrics.Len(),
ro.MetricBufferLimit,
ro.metrics.Total(),
ro.metrics.Drops()+ro.failMetrics.Drops())
}
// Write any cached metric buffers before, as those metrics are the
// oldest
for ro.tmpmetrics[ro.readI] != nil {
if err := ro.write(ro.tmpmetrics[ro.readI]); err != nil {
return err
} else {
ro.tmpmetrics[ro.readI] = nil
ro.readI = (ro.readI + 1) % cap(ro.tmpmetrics)
var err error
if !ro.failMetrics.IsEmpty() {
bufLen := ro.failMetrics.Len()
// how many batches of failed writes we need to write.
nBatches := bufLen/ro.MetricBatchSize + 1
batchSize := ro.MetricBatchSize
for i := 0; i < nBatches; i++ {
// If it's the last batch, only grab the metrics that have not had
// a write attempt already (this is primarily to preserve order).
if i == nBatches-1 {
batchSize = bufLen % ro.MetricBatchSize
}
batch := ro.failMetrics.Batch(batchSize)
// If we've already failed previous writes, don't bother trying to
// write to this output again. We are not exiting the loop just so
// that we can rotate the metrics to preserve order.
if err == nil {
err = ro.write(batch)
}
if err != nil {
ro.failMetrics.Add(batch...)
}
}
}
err := ro.write(ro.metrics)
batch := ro.metrics.Batch(ro.MetricBatchSize)
// see comment above about not trying to write to an already failed output.
// if ro.failMetrics is empty then err will always be nil at this point.
if err == nil {
err = ro.write(batch)
}
if err != nil {
ro.failMetrics.Add(batch...)
return err
} else {
ro.metrics = make([]telegraf.Metric, 0)
}
return nil
}
@ -165,8 +146,8 @@ func (ro *RunningOutput) write(metrics []telegraf.Metric) error {
elapsed := time.Since(start)
if err == nil {
if !ro.Quiet {
log.Printf("Wrote %d metrics to output %s in %s\n",
len(metrics), ro.Name, elapsed)
log.Printf("Output [%s] wrote batch of %d metrics in %s\n",
ro.Name, len(metrics), elapsed)
}
}
return err

View File

@ -2,7 +2,6 @@ package internal_models
import (
"fmt"
"sort"
"sync"
"testing"
@ -29,6 +28,62 @@ var next5 = []telegraf.Metric{
testutil.TestMetric(101, "metric10"),
}
// Benchmark adding metrics.
func BenchmarkRunningOutputAddWrite(b *testing.B) {
conf := &OutputConfig{
Filter: Filter{
IsActive: false,
},
}
m := &perfOutput{}
ro := NewRunningOutput("test", m, conf, 1000, 10000)
ro.Quiet = true
for n := 0; n < b.N; n++ {
ro.AddMetric(first5[0])
ro.Write()
}
}
// Benchmark adding metrics.
func BenchmarkRunningOutputAddWriteEvery100(b *testing.B) {
conf := &OutputConfig{
Filter: Filter{
IsActive: false,
},
}
m := &perfOutput{}
ro := NewRunningOutput("test", m, conf, 1000, 10000)
ro.Quiet = true
for n := 0; n < b.N; n++ {
ro.AddMetric(first5[0])
if n%100 == 0 {
ro.Write()
}
}
}
// Benchmark adding metrics.
func BenchmarkRunningOutputAddFailWrites(b *testing.B) {
conf := &OutputConfig{
Filter: Filter{
IsActive: false,
},
}
m := &perfOutput{}
m.failWrite = true
ro := NewRunningOutput("test", m, conf, 1000, 10000)
ro.Quiet = true
for n := 0; n < b.N; n++ {
ro.AddMetric(first5[0])
}
}
// Test that NameDrop filters ger properly applied.
func TestRunningOutput_DropFilter(t *testing.T) {
conf := &OutputConfig{
@ -40,7 +95,7 @@ func TestRunningOutput_DropFilter(t *testing.T) {
assert.NoError(t, conf.Filter.CompileFilter())
m := &mockOutput{}
ro := NewRunningOutput("test", m, conf)
ro := NewRunningOutput("test", m, conf, 1000, 10000)
for _, metric := range first5 {
ro.AddMetric(metric)
@ -66,7 +121,7 @@ func TestRunningOutput_PassFilter(t *testing.T) {
assert.NoError(t, conf.Filter.CompileFilter())
m := &mockOutput{}
ro := NewRunningOutput("test", m, conf)
ro := NewRunningOutput("test", m, conf, 1000, 10000)
for _, metric := range first5 {
ro.AddMetric(metric)
@ -92,7 +147,7 @@ func TestRunningOutput_TagIncludeNoMatch(t *testing.T) {
assert.NoError(t, conf.Filter.CompileFilter())
m := &mockOutput{}
ro := NewRunningOutput("test", m, conf)
ro := NewRunningOutput("test", m, conf, 1000, 10000)
ro.AddMetric(first5[0])
assert.Len(t, m.Metrics(), 0)
@ -114,7 +169,7 @@ func TestRunningOutput_TagExcludeMatch(t *testing.T) {
assert.NoError(t, conf.Filter.CompileFilter())
m := &mockOutput{}
ro := NewRunningOutput("test", m, conf)
ro := NewRunningOutput("test", m, conf, 1000, 10000)
ro.AddMetric(first5[0])
assert.Len(t, m.Metrics(), 0)
@ -136,7 +191,7 @@ func TestRunningOutput_TagExcludeNoMatch(t *testing.T) {
assert.NoError(t, conf.Filter.CompileFilter())
m := &mockOutput{}
ro := NewRunningOutput("test", m, conf)
ro := NewRunningOutput("test", m, conf, 1000, 10000)
ro.AddMetric(first5[0])
assert.Len(t, m.Metrics(), 0)
@ -158,7 +213,7 @@ func TestRunningOutput_TagIncludeMatch(t *testing.T) {
assert.NoError(t, conf.Filter.CompileFilter())
m := &mockOutput{}
ro := NewRunningOutput("test", m, conf)
ro := NewRunningOutput("test", m, conf, 1000, 10000)
ro.AddMetric(first5[0])
assert.Len(t, m.Metrics(), 0)
@ -178,7 +233,7 @@ func TestRunningOutputDefault(t *testing.T) {
}
m := &mockOutput{}
ro := NewRunningOutput("test", m, conf)
ro := NewRunningOutput("test", m, conf, 1000, 10000)
for _, metric := range first5 {
ro.AddMetric(metric)
@ -193,77 +248,6 @@ func TestRunningOutputDefault(t *testing.T) {
assert.Len(t, m.Metrics(), 10)
}
// Test that the first metrics batch gets overwritten if there is a buffer overflow.
func TestRunningOutputOverwrite(t *testing.T) {
conf := &OutputConfig{
Filter: Filter{
IsActive: false,
},
}
m := &mockOutput{}
ro := NewRunningOutput("test", m, conf)
ro.MetricBatchSize = 1
ro.MetricBufferLimit = 4
for _, metric := range first5 {
ro.AddMetric(metric)
}
require.Len(t, m.Metrics(), 0)
err := ro.Write()
require.NoError(t, err)
require.Len(t, m.Metrics(), 4)
var expected, actual []string
for i, exp := range first5[1:] {
expected = append(expected, exp.String())
actual = append(actual, m.Metrics()[i].String())
}
sort.Strings(expected)
sort.Strings(actual)
assert.Equal(t, expected, actual)
}
// Test that multiple buffer overflows are handled properly.
func TestRunningOutputMultiOverwrite(t *testing.T) {
conf := &OutputConfig{
Filter: Filter{
IsActive: false,
},
}
m := &mockOutput{}
ro := NewRunningOutput("test", m, conf)
ro.MetricBatchSize = 1
ro.MetricBufferLimit = 3
for _, metric := range first5 {
ro.AddMetric(metric)
}
for _, metric := range next5 {
ro.AddMetric(metric)
}
require.Len(t, m.Metrics(), 0)
err := ro.Write()
require.NoError(t, err)
require.Len(t, m.Metrics(), 3)
var expected, actual []string
for i, exp := range next5[2:] {
expected = append(expected, exp.String())
actual = append(actual, m.Metrics()[i].String())
}
sort.Strings(expected)
sort.Strings(actual)
assert.Equal(t, expected, actual)
}
// Test that running output doesn't flush until it's full when
// FlushBufferWhenFull is set.
func TestRunningOutputFlushWhenFull(t *testing.T) {
@ -274,12 +258,9 @@ func TestRunningOutputFlushWhenFull(t *testing.T) {
}
m := &mockOutput{}
ro := NewRunningOutput("test", m, conf)
ro.FlushBufferWhenFull = true
ro.MetricBatchSize = 5
ro.MetricBufferLimit = 10
ro := NewRunningOutput("test", m, conf, 6, 10)
// Fill buffer to limit
// Fill buffer to 1 under limit
for _, metric := range first5 {
ro.AddMetric(metric)
}
@ -289,7 +270,7 @@ func TestRunningOutputFlushWhenFull(t *testing.T) {
// add one more metric
ro.AddMetric(next5[0])
// now it flushed
assert.Len(t, m.Metrics(), 5)
assert.Len(t, m.Metrics(), 6)
// add one more metric and write it manually
ro.AddMetric(next5[1])
@ -308,10 +289,7 @@ func TestRunningOutputMultiFlushWhenFull(t *testing.T) {
}
m := &mockOutput{}
ro := NewRunningOutput("test", m, conf)
ro.FlushBufferWhenFull = true
ro.MetricBatchSize = 4
ro.MetricBufferLimit = 12
ro := NewRunningOutput("test", m, conf, 4, 12)
// Fill buffer past limit twive
for _, metric := range first5 {
@ -333,12 +311,9 @@ func TestRunningOutputWriteFail(t *testing.T) {
m := &mockOutput{}
m.failWrite = true
ro := NewRunningOutput("test", m, conf)
ro.FlushBufferWhenFull = true
ro.MetricBatchSize = 4
ro.MetricBufferLimit = 12
ro := NewRunningOutput("test", m, conf, 4, 12)
// Fill buffer past limit twice
// Fill buffer to limit twice
for _, metric := range first5 {
ro.AddMetric(metric)
}
@ -361,6 +336,161 @@ func TestRunningOutputWriteFail(t *testing.T) {
assert.Len(t, m.Metrics(), 10)
}
// Verify that the order of points is preserved during a write failure.
func TestRunningOutputWriteFailOrder(t *testing.T) {
conf := &OutputConfig{
Filter: Filter{
IsActive: false,
},
}
m := &mockOutput{}
m.failWrite = true
ro := NewRunningOutput("test", m, conf, 100, 1000)
// add 5 metrics
for _, metric := range first5 {
ro.AddMetric(metric)
}
// no successful flush yet
assert.Len(t, m.Metrics(), 0)
// Write fails
err := ro.Write()
require.Error(t, err)
// no successful flush yet
assert.Len(t, m.Metrics(), 0)
m.failWrite = false
// add 5 more metrics
for _, metric := range next5 {
ro.AddMetric(metric)
}
err = ro.Write()
require.NoError(t, err)
// Verify that 10 metrics were written
assert.Len(t, m.Metrics(), 10)
// Verify that they are in order
expected := append(first5, next5...)
assert.Equal(t, expected, m.Metrics())
}
// Verify that the order of points is preserved during many write failures.
func TestRunningOutputWriteFailOrder2(t *testing.T) {
conf := &OutputConfig{
Filter: Filter{
IsActive: false,
},
}
m := &mockOutput{}
m.failWrite = true
ro := NewRunningOutput("test", m, conf, 5, 100)
// add 5 metrics
for _, metric := range first5 {
ro.AddMetric(metric)
}
// Write fails
err := ro.Write()
require.Error(t, err)
// no successful flush yet
assert.Len(t, m.Metrics(), 0)
// add 5 metrics
for _, metric := range next5 {
ro.AddMetric(metric)
}
// Write fails
err = ro.Write()
require.Error(t, err)
// no successful flush yet
assert.Len(t, m.Metrics(), 0)
// add 5 metrics
for _, metric := range first5 {
ro.AddMetric(metric)
}
// Write fails
err = ro.Write()
require.Error(t, err)
// no successful flush yet
assert.Len(t, m.Metrics(), 0)
// add 5 metrics
for _, metric := range next5 {
ro.AddMetric(metric)
}
// Write fails
err = ro.Write()
require.Error(t, err)
// no successful flush yet
assert.Len(t, m.Metrics(), 0)
m.failWrite = false
err = ro.Write()
require.NoError(t, err)
// Verify that 10 metrics were written
assert.Len(t, m.Metrics(), 20)
// Verify that they are in order
expected := append(first5, next5...)
expected = append(expected, first5...)
expected = append(expected, next5...)
assert.Equal(t, expected, m.Metrics())
}
// Verify that the order of points is preserved when there is a remainder
// of points for the batch.
//
// ie, with a batch size of 5:
//
// 1 2 3 4 5 6 <-- order, failed points
// 6 1 2 3 4 5 <-- order, after 1st write failure (1 2 3 4 5 was batch)
// 1 2 3 4 5 6 <-- order, after 2nd write failure, (6 was batch)
//
func TestRunningOutputWriteFailOrder3(t *testing.T) {
conf := &OutputConfig{
Filter: Filter{
IsActive: false,
},
}
m := &mockOutput{}
m.failWrite = true
ro := NewRunningOutput("test", m, conf, 5, 1000)
// add 5 metrics
for _, metric := range first5 {
ro.AddMetric(metric)
}
// no successful flush yet
assert.Len(t, m.Metrics(), 0)
// Write fails
err := ro.Write()
require.Error(t, err)
// no successful flush yet
assert.Len(t, m.Metrics(), 0)
// add and attempt to write a single metric:
ro.AddMetric(next5[0])
err = ro.Write()
require.Error(t, err)
// unset fail and write metrics
m.failWrite = false
err = ro.Write()
require.NoError(t, err)
// Verify that 6 metrics were written
assert.Len(t, m.Metrics(), 6)
// Verify that they are in order
expected := append(first5, next5[0])
assert.Equal(t, expected, m.Metrics())
}
type mockOutput struct {
sync.Mutex
@ -408,3 +538,31 @@ func (m *mockOutput) Metrics() []telegraf.Metric {
defer m.Unlock()
return m.metrics
}
type perfOutput struct {
// if true, mock a write failure
failWrite bool
}
func (m *perfOutput) Connect() error {
return nil
}
func (m *perfOutput) Close() error {
return nil
}
func (m *perfOutput) Description() string {
return ""
}
func (m *perfOutput) SampleConfig() string {
return ""
}
func (m *perfOutput) Write(metrics []telegraf.Metric) error {
if m.failWrite {
return fmt.Errorf("Failed Write!")
}
return nil
}