Remove outputs blocking inputs when output is slow (#4938)

This commit is contained in:
Daniel Nelson
2018-11-05 13:34:28 -08:00
committed by GitHub
parent 74667cd681
commit 6e5c2f8bb6
59 changed files with 3615 additions and 2189 deletions

View File

@@ -1,18 +1,14 @@
# Kafka Consumer Input Plugin
The [Kafka](http://kafka.apache.org/) consumer plugin polls a specified Kafka
topic and adds messages to InfluxDB. The plugin assumes messages follow the
line protocol. [Consumer Group](http://godoc.org/github.com/wvanbergen/kafka/consumergroup)
is used to talk to the Kafka cluster so multiple instances of telegraf can read
from the same topic in parallel.
The [Kafka][kafka] consumer plugin reads from Kafka
and creates metrics using one of the supported [input data formats][].
For old kafka version (< 0.8), please use the kafka_consumer_legacy input plugin
For old kafka version (< 0.8), please use the [kafka_consumer_legacy][] input plugin
and use the old zookeeper connection method.
## Configuration
### Configuration
```toml
# Read metrics from Kafka topic(s)
[[inputs.kafka_consumer]]
## kafka servers
brokers = ["localhost:9092"]
@@ -44,18 +40,27 @@ and use the old zookeeper connection method.
## Offset (must be either "oldest" or "newest")
offset = "oldest"
## Maximum length of a message to consume, in bytes (default 0/unlimited);
## larger messages are dropped
max_message_len = 1000000
## Maximum messages to read from the broker that have not been written by an
## output. For best throughput set based on the number of metrics within
## each message and the size of the output's metric_batch_size.
##
## For example, if each message from the queue contains 10 metrics and the
## output metric_batch_size is 1000, setting this to 100 will ensure that a
## full batch is collected and the write is triggered immediately without
## waiting until the next flush_interval.
# max_undelivered_messages = 1000
## Data format to consume.
## Each data format has its own unique set of configuration options, read
## more about them here:
## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
data_format = "influx"
## Maximum length of a message to consume, in bytes (default 0/unlimited);
## larger messages are dropped
max_message_len = 1000000
```
## Testing
Running integration tests requires running Zookeeper & Kafka. See Makefile
for kafka container command.
[kafka]: https://kafka.apache.org
[kafka_consumer_legacy]: /plugins/inputs/kafka_consumer_legacy/README.md
[input data formats]: /docs/DATA_FORMATS_INPUT.md

View File

@@ -1,55 +1,54 @@
package kafka_consumer
import (
"context"
"fmt"
"log"
"strings"
"sync"
"github.com/Shopify/sarama"
cluster "github.com/bsm/sarama-cluster"
"github.com/influxdata/telegraf"
"github.com/influxdata/telegraf/internal/tls"
"github.com/influxdata/telegraf/plugins/inputs"
"github.com/influxdata/telegraf/plugins/parsers"
"github.com/Shopify/sarama"
cluster "github.com/bsm/sarama-cluster"
)
const (
defaultMaxUndeliveredMessages = 1000
)
type empty struct{}
type semaphore chan empty
type Consumer interface {
Errors() <-chan error
Messages() <-chan *sarama.ConsumerMessage
MarkOffset(msg *sarama.ConsumerMessage, metadata string)
Close() error
}
type Kafka struct {
ConsumerGroup string
ClientID string `toml:"client_id"`
Topics []string
Brokers []string
MaxMessageLen int
Version string `toml:"version"`
Cluster *cluster.Consumer
ConsumerGroup string `toml:"consumer_group"`
ClientID string `toml:"client_id"`
Topics []string `toml:"topics"`
Brokers []string `toml:"brokers"`
MaxMessageLen int `toml:"max_message_len"`
Version string `toml:"version"`
MaxUndeliveredMessages int `toml:"max_undelivered_messages"`
Offset string `toml:"offset"`
SASLUsername string `toml:"sasl_username"`
SASLPassword string `toml:"sasl_password"`
tls.ClientConfig
// SASL Username
SASLUsername string `toml:"sasl_username"`
// SASL Password
SASLPassword string `toml:"sasl_password"`
cluster Consumer
parser parsers.Parser
wg *sync.WaitGroup
cancel context.CancelFunc
// Legacy metric buffer support
MetricBuffer int
// TODO remove PointBuffer, legacy support
PointBuffer int
Offset string
parser parsers.Parser
sync.Mutex
// channel for all incoming kafka messages
in <-chan *sarama.ConsumerMessage
// channel for all kafka consumer errors
errs <-chan error
done chan struct{}
// keep the accumulator internally:
acc telegraf.Accumulator
// Unconfirmed messages
messages map[telegraf.TrackingID]*sarama.ConsumerMessage
// doNotCommitMsgs tells the parser not to call CommitUpTo on the consumer
// this is mostly for test purposes, but there may be a use-case for it later.
@@ -86,16 +85,25 @@ var sampleConfig = `
consumer_group = "telegraf_metrics_consumers"
## Offset (must be either "oldest" or "newest")
offset = "oldest"
## Maximum length of a message to consume, in bytes (default 0/unlimited);
## larger messages are dropped
max_message_len = 1000000
## Maximum messages to read from the broker that have not been written by an
## output. For best throughput set based on the number of metrics within
## each message and the size of the output's metric_batch_size.
##
## For example, if each message from the queue contains 10 metrics and the
## output metric_batch_size is 1000, setting this to 100 will ensure that a
## full batch is collected and the write is triggered immediately without
## waiting until the next flush_interval.
# max_undelivered_messages = 1000
## Data format to consume.
## Each data format has its own unique set of configuration options, read
## more about them here:
## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
data_format = "influx"
## Maximum length of a message to consume, in bytes (default 0/unlimited);
## larger messages are dropped
max_message_len = 1000000
`
func (k *Kafka) SampleConfig() string {
@@ -111,12 +119,8 @@ func (k *Kafka) SetParser(parser parsers.Parser) {
}
func (k *Kafka) Start(acc telegraf.Accumulator) error {
k.Lock()
defer k.Unlock()
var clusterErr error
k.acc = acc
config := cluster.NewConfig()
if k.Version != "" {
@@ -159,13 +163,13 @@ func (k *Kafka) Start(acc telegraf.Accumulator) error {
case "newest":
config.Consumer.Offsets.Initial = sarama.OffsetNewest
default:
log.Printf("I! WARNING: Kafka consumer invalid offset '%s', using 'oldest'\n",
log.Printf("I! WARNING: Kafka consumer invalid offset '%s', using 'oldest'",
k.Offset)
config.Consumer.Offsets.Initial = sarama.OffsetOldest
}
if k.Cluster == nil {
k.Cluster, clusterErr = cluster.NewConsumer(
if k.cluster == nil {
k.cluster, clusterErr = cluster.NewConsumer(
k.Brokers,
k.ConsumerGroup,
k.Topics,
@@ -173,67 +177,110 @@ func (k *Kafka) Start(acc telegraf.Accumulator) error {
)
if clusterErr != nil {
log.Printf("E! Error when creating Kafka Consumer, brokers: %v, topics: %v\n",
log.Printf("E! Error when creating Kafka Consumer, brokers: %v, topics: %v",
k.Brokers, k.Topics)
return clusterErr
}
// Setup message and error channels
k.in = k.Cluster.Messages()
k.errs = k.Cluster.Errors()
}
k.done = make(chan struct{})
// Start the kafka message reader
go k.receiver()
log.Printf("I! Started the kafka consumer service, brokers: %v, topics: %v\n",
ctx, cancel := context.WithCancel(context.Background())
k.cancel = cancel
// Start consumer goroutine
k.wg = &sync.WaitGroup{}
k.wg.Add(1)
go func() {
defer k.wg.Done()
k.receiver(ctx, acc)
}()
log.Printf("I! Started the kafka consumer service, brokers: %v, topics: %v",
k.Brokers, k.Topics)
return nil
}
// receiver() reads all incoming messages from the consumer, and parses them into
// influxdb metric points.
func (k *Kafka) receiver() {
func (k *Kafka) receiver(ctx context.Context, ac telegraf.Accumulator) {
k.messages = make(map[telegraf.TrackingID]*sarama.ConsumerMessage)
acc := ac.WithTracking(k.MaxUndeliveredMessages)
sem := make(semaphore, k.MaxUndeliveredMessages)
for {
select {
case <-k.done:
case <-ctx.Done():
return
case err := <-k.errs:
if err != nil {
k.acc.AddError(fmt.Errorf("Consumer Error: %s\n", err))
}
case msg := <-k.in:
if k.MaxMessageLen != 0 && len(msg.Value) > k.MaxMessageLen {
k.acc.AddError(fmt.Errorf("Message longer than max_message_len (%d > %d)",
len(msg.Value), k.MaxMessageLen))
} else {
metrics, err := k.parser.Parse(msg.Value)
case track := <-acc.Delivered():
<-sem
k.onDelivery(track)
case err := <-k.cluster.Errors():
acc.AddError(err)
case sem <- empty{}:
select {
case <-ctx.Done():
return
case track := <-acc.Delivered():
// Once for the delivered message, once to leave the case
<-sem
<-sem
k.onDelivery(track)
case err := <-k.cluster.Errors():
<-sem
acc.AddError(err)
case msg := <-k.cluster.Messages():
err := k.onMessage(acc, msg)
if err != nil {
k.acc.AddError(fmt.Errorf("Message Parse Error\nmessage: %s\nerror: %s",
string(msg.Value), err.Error()))
acc.AddError(err)
<-sem
}
for _, metric := range metrics {
k.acc.AddFields(metric.Name(), metric.Fields(), metric.Tags(), metric.Time())
}
}
if !k.doNotCommitMsgs {
// TODO(cam) this locking can be removed if this PR gets merged:
// https://github.com/wvanbergen/kafka/pull/84
k.Lock()
k.Cluster.MarkOffset(msg, "")
k.Unlock()
}
}
}
}
func (k *Kafka) markOffset(msg *sarama.ConsumerMessage) {
if !k.doNotCommitMsgs {
k.cluster.MarkOffset(msg, "")
}
}
func (k *Kafka) onMessage(acc telegraf.TrackingAccumulator, msg *sarama.ConsumerMessage) error {
if k.MaxMessageLen != 0 && len(msg.Value) > k.MaxMessageLen {
k.markOffset(msg)
return fmt.Errorf("Message longer than max_message_len (%d > %d)",
len(msg.Value), k.MaxMessageLen)
}
metrics, err := k.parser.Parse(msg.Value)
if err != nil {
return err
}
id := acc.AddTrackingMetricGroup(metrics)
k.messages[id] = msg
return nil
}
func (k *Kafka) onDelivery(track telegraf.DeliveryInfo) {
msg, ok := k.messages[track.ID()]
if !ok {
log.Printf("E! [inputs.kafka_consumer] Could not mark message delivered: %d", track.ID())
}
if track.Delivered() {
k.markOffset(msg)
}
delete(k.messages, track.ID())
}
func (k *Kafka) Stop() {
k.Lock()
defer k.Unlock()
close(k.done)
if err := k.Cluster.Close(); err != nil {
k.acc.AddError(fmt.Errorf("Error closing consumer: %s\n", err.Error()))
k.cancel()
k.wg.Wait()
if err := k.cluster.Close(); err != nil {
log.Printf("E! [inputs.kafka_consumer] Error closing consumer: %v", err)
}
}
@@ -243,6 +290,8 @@ func (k *Kafka) Gather(acc telegraf.Accumulator) error {
func init() {
inputs.Add("kafka_consumer", func() telegraf.Input {
return &Kafka{}
return &Kafka{
MaxUndeliveredMessages: defaultMaxUndeliveredMessages,
}
})
}

View File

@@ -38,7 +38,6 @@ func TestReadsMetricsFromKafka(t *testing.T) {
ConsumerGroup: "telegraf_test_consumers",
Topics: []string{testTopic},
Brokers: brokerPeers,
PointBuffer: 100000,
Offset: "oldest",
}
p, _ := parsers.NewInfluxParser()

View File

@@ -1,13 +1,14 @@
package kafka_consumer
import (
"context"
"strings"
"testing"
"github.com/Shopify/sarama"
"github.com/influxdata/telegraf"
"github.com/influxdata/telegraf/plugins/parsers"
"github.com/influxdata/telegraf/testutil"
"github.com/Shopify/sarama"
"github.com/stretchr/testify/assert"
)
@@ -18,31 +19,57 @@ const (
invalidMsg = "cpu_load_short,host=server01 1422568543702900257\n"
)
func newTestKafka() (*Kafka, chan *sarama.ConsumerMessage) {
in := make(chan *sarama.ConsumerMessage, 1000)
k := Kafka{
ConsumerGroup: "test",
Topics: []string{"telegraf"},
Brokers: []string{"localhost:9092"},
Offset: "oldest",
in: in,
doNotCommitMsgs: true,
errs: make(chan error, 1000),
done: make(chan struct{}),
type TestConsumer struct {
errors chan error
messages chan *sarama.ConsumerMessage
}
func (c *TestConsumer) Errors() <-chan error {
return c.errors
}
func (c *TestConsumer) Messages() <-chan *sarama.ConsumerMessage {
return c.messages
}
func (c *TestConsumer) MarkOffset(msg *sarama.ConsumerMessage, metadata string) {
}
func (c *TestConsumer) Close() error {
return nil
}
func (c *TestConsumer) Inject(msg *sarama.ConsumerMessage) {
c.messages <- msg
}
func newTestKafka() (*Kafka, *TestConsumer) {
consumer := &TestConsumer{
errors: make(chan error),
messages: make(chan *sarama.ConsumerMessage, 1000),
}
return &k, in
k := Kafka{
cluster: consumer,
ConsumerGroup: "test",
Topics: []string{"telegraf"},
Brokers: []string{"localhost:9092"},
Offset: "oldest",
MaxUndeliveredMessages: defaultMaxUndeliveredMessages,
doNotCommitMsgs: true,
messages: make(map[telegraf.TrackingID]*sarama.ConsumerMessage),
}
return &k, consumer
}
// Test that the parser parses kafka messages into points
func TestRunParser(t *testing.T) {
k, in := newTestKafka()
k, consumer := newTestKafka()
acc := testutil.Accumulator{}
k.acc = &acc
defer close(k.done)
ctx := context.Background()
k.parser, _ = parsers.NewInfluxParser()
go k.receiver()
in <- saramaMsg(testMsg)
go k.receiver(ctx, &acc)
consumer.Inject(saramaMsg(testMsg))
acc.Wait(1)
assert.Equal(t, acc.NFields(), 1)
@@ -50,14 +77,13 @@ func TestRunParser(t *testing.T) {
// Test that the parser ignores invalid messages
func TestRunParserInvalidMsg(t *testing.T) {
k, in := newTestKafka()
k, consumer := newTestKafka()
acc := testutil.Accumulator{}
k.acc = &acc
defer close(k.done)
ctx := context.Background()
k.parser, _ = parsers.NewInfluxParser()
go k.receiver()
in <- saramaMsg(invalidMsg)
go k.receiver(ctx, &acc)
consumer.Inject(saramaMsg(invalidMsg))
acc.WaitError(1)
assert.Equal(t, acc.NFields(), 0)
@@ -66,15 +92,14 @@ func TestRunParserInvalidMsg(t *testing.T) {
// Test that overlong messages are dropped
func TestDropOverlongMsg(t *testing.T) {
const maxMessageLen = 64 * 1024
k, in := newTestKafka()
k, consumer := newTestKafka()
k.MaxMessageLen = maxMessageLen
acc := testutil.Accumulator{}
k.acc = &acc
defer close(k.done)
ctx := context.Background()
overlongMsg := strings.Repeat("v", maxMessageLen+1)
go k.receiver()
in <- saramaMsg(overlongMsg)
go k.receiver(ctx, &acc)
consumer.Inject(saramaMsg(overlongMsg))
acc.WaitError(1)
assert.Equal(t, acc.NFields(), 0)
@@ -82,14 +107,13 @@ func TestDropOverlongMsg(t *testing.T) {
// Test that the parser parses kafka messages into points
func TestRunParserAndGather(t *testing.T) {
k, in := newTestKafka()
k, consumer := newTestKafka()
acc := testutil.Accumulator{}
k.acc = &acc
defer close(k.done)
ctx := context.Background()
k.parser, _ = parsers.NewInfluxParser()
go k.receiver()
in <- saramaMsg(testMsg)
go k.receiver(ctx, &acc)
consumer.Inject(saramaMsg(testMsg))
acc.Wait(1)
acc.GatherError(k.Gather)
@@ -101,14 +125,13 @@ func TestRunParserAndGather(t *testing.T) {
// Test that the parser parses kafka messages into points
func TestRunParserAndGatherGraphite(t *testing.T) {
k, in := newTestKafka()
k, consumer := newTestKafka()
acc := testutil.Accumulator{}
k.acc = &acc
defer close(k.done)
ctx := context.Background()
k.parser, _ = parsers.NewGraphiteParser("_", []string{}, nil)
go k.receiver()
in <- saramaMsg(testMsgGraphite)
go k.receiver(ctx, &acc)
consumer.Inject(saramaMsg(testMsgGraphite))
acc.Wait(1)
acc.GatherError(k.Gather)
@@ -120,17 +143,16 @@ func TestRunParserAndGatherGraphite(t *testing.T) {
// Test that the parser parses kafka messages into points
func TestRunParserAndGatherJSON(t *testing.T) {
k, in := newTestKafka()
k, consumer := newTestKafka()
acc := testutil.Accumulator{}
k.acc = &acc
defer close(k.done)
ctx := context.Background()
k.parser, _ = parsers.NewParser(&parsers.Config{
DataFormat: "json",
MetricName: "kafka_json_test",
})
go k.receiver()
in <- saramaMsg(testMsgJSON)
go k.receiver(ctx, &acc)
consumer.Inject(saramaMsg(testMsgJSON))
acc.Wait(1)
acc.GatherError(k.Gather)