package config import ( "bytes" "errors" "fmt" "io/ioutil" "log" "math" "net/http" "net/url" "os" "path/filepath" "regexp" "runtime" "sort" "strconv" "strings" "time" "github.com/influxdata/telegraf" "github.com/influxdata/telegraf/internal" "github.com/influxdata/telegraf/internal/models" "github.com/influxdata/telegraf/plugins/aggregators" "github.com/influxdata/telegraf/plugins/inputs" "github.com/influxdata/telegraf/plugins/outputs" "github.com/influxdata/telegraf/plugins/parsers" "github.com/influxdata/telegraf/plugins/processors" "github.com/influxdata/telegraf/plugins/serializers" "github.com/influxdata/toml" "github.com/influxdata/toml/ast" ) var ( // Default input plugins inputDefaults = []string{"cpu", "mem", "swap", "system", "kernel", "processes", "disk", "diskio"} // Default output plugins outputDefaults = []string{"influxdb"} // envVarRe is a regex to find environment variables in the config file envVarRe = regexp.MustCompile(`\$\w+`) envVarEscaper = strings.NewReplacer( `"`, `\"`, `\`, `\\`, ) ) // Config specifies the URL/user/password for the database that telegraf // will be logging to, as well as all the plugins that the user has // specified type Config struct { Tags map[string]string InputFilters []string OutputFilters []string Agent *AgentConfig Inputs []*models.RunningInput Outputs []*models.RunningOutput Aggregators []*models.RunningAggregator // Processors have a slice wrapper type because they need to be sorted Processors models.RunningProcessors } func NewConfig() *Config { c := &Config{ // Agent defaults: Agent: &AgentConfig{ Interval: internal.Duration{Duration: 10 * time.Second}, RoundInterval: true, FlushInterval: internal.Duration{Duration: 10 * time.Second}, }, Tags: make(map[string]string), Inputs: make([]*models.RunningInput, 0), Outputs: make([]*models.RunningOutput, 0), Processors: make([]*models.RunningProcessor, 0), InputFilters: make([]string, 0), OutputFilters: make([]string, 0), } return c } type AgentConfig struct { // Interval at which to gather information Interval internal.Duration // RoundInterval rounds collection interval to 'interval'. // ie, if Interval=10s then always collect on :00, :10, :20, etc. RoundInterval bool // By default or when set to "0s", precision will be set to the same // timestamp order as the collection interval, with the maximum being 1s. // ie, when interval = "10s", precision will be "1s" // when interval = "250ms", precision will be "1ms" // Precision will NOT be used for service inputs. It is up to each individual // service input to set the timestamp at the appropriate precision. Precision internal.Duration // CollectionJitter is used to jitter the collection by a random amount. // Each plugin will sleep for a random time within jitter before collecting. // This can be used to avoid many plugins querying things like sysfs at the // same time, which can have a measurable effect on the system. CollectionJitter internal.Duration // FlushInterval is the Interval at which to flush data FlushInterval internal.Duration // FlushJitter Jitters the flush interval by a random amount. // This is primarily to avoid large write spikes for users running a large // number of telegraf instances. // ie, a jitter of 5s and interval 10s means flushes will happen every 10-15s FlushJitter internal.Duration // MetricBatchSize is the maximum number of metrics that is wrote to an // output plugin in one call. MetricBatchSize int // MetricBufferLimit is the max number of metrics that each output plugin // will cache. The buffer is cleared when a successful write occurs. When // full, the oldest metrics will be overwritten. This number should be a // multiple of MetricBatchSize. Due to current implementation, this could // not be less than 2 times MetricBatchSize. MetricBufferLimit int // FlushBufferWhenFull tells Telegraf to flush the metric buffer whenever // it fills up, regardless of FlushInterval. Setting this option to true // does _not_ deactivate FlushInterval. FlushBufferWhenFull bool // TODO(cam): Remove UTC and parameter, they are no longer // valid for the agent config. Leaving them here for now for backwards- // compatibility UTC bool `toml:"utc"` // Debug is the option for running in debug mode Debug bool // Logfile specifies the file to send logs to Logfile string // Quiet is the option for running in quiet mode Quiet bool Hostname string OmitHostname bool } // Inputs returns a list of strings of the configured inputs. func (c *Config) InputNames() []string { var name []string for _, input := range c.Inputs { name = append(name, input.Name()) } return name } // Outputs returns a list of strings of the configured aggregators. func (c *Config) AggregatorNames() []string { var name []string for _, aggregator := range c.Aggregators { name = append(name, aggregator.Name()) } return name } // Outputs returns a list of strings of the configured processors. func (c *Config) ProcessorNames() []string { var name []string for _, processor := range c.Processors { name = append(name, processor.Name) } return name } // Outputs returns a list of strings of the configured outputs. func (c *Config) OutputNames() []string { var name []string for _, output := range c.Outputs { name = append(name, output.Name) } return name } // ListTags returns a string of tags specified in the config, // line-protocol style func (c *Config) ListTags() string { var tags []string for k, v := range c.Tags { tags = append(tags, fmt.Sprintf("%s=%s", k, v)) } sort.Strings(tags) return strings.Join(tags, " ") } var header = `# Telegraf Configuration # # Telegraf is entirely plugin driven. All metrics are gathered from the # declared inputs, and sent to the declared outputs. # # Plugins must be declared in here to be active. # To deactivate a plugin, comment out the name and any variables. # # Use 'telegraf -config telegraf.conf -test' to see what metrics a config # file would generate. # # Environment variables can be used anywhere in this config file, simply prepend # them with $. For strings the variable must be within quotes (ie, "$STR_VAR"), # for numbers and booleans they should be plain (ie, $INT_VAR, $BOOL_VAR) # Global tags can be specified here in key="value" format. [global_tags] # dc = "us-east-1" # will tag all metrics with dc=us-east-1 # rack = "1a" ## Environment variables can be used as tags, and throughout the config file # user = "$USER" # Configuration for telegraf agent [agent] ## Default data collection interval for all inputs interval = "10s" ## Rounds collection interval to 'interval' ## ie, if interval="10s" then always collect on :00, :10, :20, etc. round_interval = true ## Telegraf will send metrics to outputs in batches of at most ## metric_batch_size metrics. ## This controls the size of writes that Telegraf sends to output plugins. metric_batch_size = 1000 ## For failed writes, telegraf will cache metric_buffer_limit metrics for each ## output, and will flush this buffer on a successful write. Oldest metrics ## are dropped first when this buffer fills. ## This buffer only fills when writes fail to output plugin(s). metric_buffer_limit = 10000 ## Collection jitter is used to jitter the collection by a random amount. ## Each plugin will sleep for a random time within jitter before collecting. ## This can be used to avoid many plugins querying things like sysfs at the ## same time, which can have a measurable effect on the system. collection_jitter = "0s" ## Default flushing interval for all outputs. Maximum flush_interval will be ## flush_interval + flush_jitter flush_interval = "10s" ## Jitter the flush interval by a random amount. This is primarily to avoid ## large write spikes for users running a large number of telegraf instances. ## ie, a jitter of 5s and interval 10s means flushes will happen every 10-15s flush_jitter = "0s" ## By default or when set to "0s", precision will be set to the same ## timestamp order as the collection interval, with the maximum being 1s. ## ie, when interval = "10s", precision will be "1s" ## when interval = "250ms", precision will be "1ms" ## Precision will NOT be used for service inputs. It is up to each individual ## service input to set the timestamp at the appropriate precision. ## Valid time units are "ns", "us" (or "µs"), "ms", "s". precision = "" ## Logging configuration: ## Run telegraf with debug log messages. debug = false ## Run telegraf in quiet mode (error log messages only). quiet = false ## Specify the log file name. The empty string means to log to stderr. logfile = "" ## Override default hostname, if empty use os.Hostname() hostname = "" ## If set to true, do no set the "host" tag in the telegraf agent. omit_hostname = false ############################################################################### # OUTPUT PLUGINS # ############################################################################### ` var processorHeader = ` ############################################################################### # PROCESSOR PLUGINS # ############################################################################### ` var aggregatorHeader = ` ############################################################################### # AGGREGATOR PLUGINS # ############################################################################### ` var inputHeader = ` ############################################################################### # INPUT PLUGINS # ############################################################################### ` var serviceInputHeader = ` ############################################################################### # SERVICE INPUT PLUGINS # ############################################################################### ` // PrintSampleConfig prints the sample config func PrintSampleConfig( inputFilters []string, outputFilters []string, aggregatorFilters []string, processorFilters []string, ) { fmt.Printf(header) // print output plugins if len(outputFilters) != 0 { printFilteredOutputs(outputFilters, false) } else { printFilteredOutputs(outputDefaults, false) // Print non-default outputs, commented var pnames []string for pname := range outputs.Outputs { if !sliceContains(pname, outputDefaults) { pnames = append(pnames, pname) } } sort.Strings(pnames) printFilteredOutputs(pnames, true) } // print processor plugins fmt.Printf(processorHeader) if len(processorFilters) != 0 { printFilteredProcessors(processorFilters, false) } else { pnames := []string{} for pname := range processors.Processors { pnames = append(pnames, pname) } sort.Strings(pnames) printFilteredProcessors(pnames, true) } // pring aggregator plugins fmt.Printf(aggregatorHeader) if len(aggregatorFilters) != 0 { printFilteredAggregators(aggregatorFilters, false) } else { pnames := []string{} for pname := range aggregators.Aggregators { pnames = append(pnames, pname) } sort.Strings(pnames) printFilteredAggregators(pnames, true) } // print input plugins fmt.Printf(inputHeader) if len(inputFilters) != 0 { printFilteredInputs(inputFilters, false) } else { printFilteredInputs(inputDefaults, false) // Print non-default inputs, commented var pnames []string for pname := range inputs.Inputs { if !sliceContains(pname, inputDefaults) { pnames = append(pnames, pname) } } sort.Strings(pnames) printFilteredInputs(pnames, true) } } func printFilteredProcessors(processorFilters []string, commented bool) { // Filter processors var pnames []string for pname := range processors.Processors { if sliceContains(pname, processorFilters) { pnames = append(pnames, pname) } } sort.Strings(pnames) // Print Outputs for _, pname := range pnames { creator := processors.Processors[pname] output := creator() printConfig(pname, output, "processors", commented) } } func printFilteredAggregators(aggregatorFilters []string, commented bool) { // Filter outputs var anames []string for aname := range aggregators.Aggregators { if sliceContains(aname, aggregatorFilters) { anames = append(anames, aname) } } sort.Strings(anames) // Print Outputs for _, aname := range anames { creator := aggregators.Aggregators[aname] output := creator() printConfig(aname, output, "aggregators", commented) } } func printFilteredInputs(inputFilters []string, commented bool) { // Filter inputs var pnames []string for pname := range inputs.Inputs { if sliceContains(pname, inputFilters) { pnames = append(pnames, pname) } } sort.Strings(pnames) // cache service inputs to print them at the end servInputs := make(map[string]telegraf.ServiceInput) // for alphabetical looping: servInputNames := []string{} // Print Inputs for _, pname := range pnames { creator := inputs.Inputs[pname] input := creator() switch p := input.(type) { case telegraf.ServiceInput: servInputs[pname] = p servInputNames = append(servInputNames, pname) continue } printConfig(pname, input, "inputs", commented) } // Print Service Inputs if len(servInputs) == 0 { return } sort.Strings(servInputNames) fmt.Printf(serviceInputHeader) for _, name := range servInputNames { printConfig(name, servInputs[name], "inputs", commented) } } func printFilteredOutputs(outputFilters []string, commented bool) { // Filter outputs var onames []string for oname := range outputs.Outputs { if sliceContains(oname, outputFilters) { onames = append(onames, oname) } } sort.Strings(onames) // Print Outputs for _, oname := range onames { creator := outputs.Outputs[oname] output := creator() printConfig(oname, output, "outputs", commented) } } type printer interface { Description() string SampleConfig() string } func printConfig(name string, p printer, op string, commented bool) { comment := "" if commented { comment = "# " } fmt.Printf("\n%s# %s\n%s[[%s.%s]]", comment, p.Description(), comment, op, name) config := p.SampleConfig() if config == "" { fmt.Printf("\n%s # no configuration\n\n", comment) } else { lines := strings.Split(config, "\n") for i, line := range lines { if i == 0 || i == len(lines)-1 { fmt.Print("\n") continue } fmt.Print(strings.TrimRight(comment+line, " ") + "\n") } } } func sliceContains(name string, list []string) bool { for _, b := range list { if b == name { return true } } return false } // PrintInputConfig prints the config usage of a single input. func PrintInputConfig(name string) error { if creator, ok := inputs.Inputs[name]; ok { printConfig(name, creator(), "inputs", false) } else { return errors.New(fmt.Sprintf("Input %s not found", name)) } return nil } // PrintOutputConfig prints the config usage of a single output. func PrintOutputConfig(name string) error { if creator, ok := outputs.Outputs[name]; ok { printConfig(name, creator(), "outputs", false) } else { return errors.New(fmt.Sprintf("Output %s not found", name)) } return nil } func (c *Config) LoadDirectory(path string) error { walkfn := func(thispath string, info os.FileInfo, _ error) error { if info == nil { log.Printf("W! Telegraf is not permitted to read %s", thispath) return nil } if info.IsDir() { if strings.HasPrefix(info.Name(), "..") { // skip Kubernetes mounts, prevening loading the same config twice return filepath.SkipDir } return nil } name := info.Name() if len(name) < 6 || name[len(name)-5:] != ".conf" { return nil } err := c.LoadConfig(thispath) if err != nil { return err } return nil } return filepath.Walk(path, walkfn) } // Try to find a default config file at these locations (in order): // 1. $TELEGRAF_CONFIG_PATH // 2. $HOME/.telegraf/telegraf.conf // 3. /etc/telegraf/telegraf.conf // func getDefaultConfigPath() (string, error) { envfile := os.Getenv("TELEGRAF_CONFIG_PATH") homefile := os.ExpandEnv("${HOME}/.telegraf/telegraf.conf") etcfile := "/etc/telegraf/telegraf.conf" if runtime.GOOS == "windows" { etcfile = `C:\Program Files\Telegraf\telegraf.conf` } for _, path := range []string{envfile, homefile, etcfile} { if _, err := os.Stat(path); err == nil { log.Printf("I! Using config file: %s", path) return path, nil } } // if we got here, we didn't find a file in a default location return "", fmt.Errorf("No config file specified, and could not find one"+ " in $TELEGRAF_CONFIG_PATH, %s, or %s", homefile, etcfile) } // LoadConfig loads the given config file and applies it to c func (c *Config) LoadConfig(path string) error { var err error if path == "" { if path, err = getDefaultConfigPath(); err != nil { return err } } data, err := loadConfig(path) if err != nil { return fmt.Errorf("Error loading %s, %s", path, err) } tbl, err := parseConfig(data) if err != nil { return fmt.Errorf("Error parsing %s, %s", path, err) } // Parse tags tables first: for _, tableName := range []string{"tags", "global_tags"} { if val, ok := tbl.Fields[tableName]; ok { subTable, ok := val.(*ast.Table) if !ok { return fmt.Errorf("%s: invalid configuration", path) } if err = toml.UnmarshalTable(subTable, c.Tags); err != nil { log.Printf("E! Could not parse [global_tags] config\n") return fmt.Errorf("Error parsing %s, %s", path, err) } } } // Parse agent table: if val, ok := tbl.Fields["agent"]; ok { subTable, ok := val.(*ast.Table) if !ok { return fmt.Errorf("%s: invalid configuration", path) } if err = toml.UnmarshalTable(subTable, c.Agent); err != nil { log.Printf("E! Could not parse [agent] config\n") return fmt.Errorf("Error parsing %s, %s", path, err) } } if !c.Agent.OmitHostname { if c.Agent.Hostname == "" { hostname, err := os.Hostname() if err != nil { return err } c.Agent.Hostname = hostname } c.Tags["host"] = c.Agent.Hostname } // Parse all the rest of the plugins: for name, val := range tbl.Fields { subTable, ok := val.(*ast.Table) if !ok { return fmt.Errorf("%s: invalid configuration", path) } switch name { case "agent", "global_tags", "tags": case "outputs": for pluginName, pluginVal := range subTable.Fields { switch pluginSubTable := pluginVal.(type) { // legacy [outputs.influxdb] support case *ast.Table: if err = c.addOutput(pluginName, pluginSubTable); err != nil { return fmt.Errorf("Error parsing %s, %s", path, err) } case []*ast.Table: for _, t := range pluginSubTable { if err = c.addOutput(pluginName, t); err != nil { return fmt.Errorf("Error parsing %s, %s", path, err) } } default: return fmt.Errorf("Unsupported config format: %s, file %s", pluginName, path) } } case "inputs", "plugins": for pluginName, pluginVal := range subTable.Fields { switch pluginSubTable := pluginVal.(type) { // legacy [inputs.cpu] support case *ast.Table: if err = c.addInput(pluginName, pluginSubTable); err != nil { return fmt.Errorf("Error parsing %s, %s", path, err) } case []*ast.Table: for _, t := range pluginSubTable { if err = c.addInput(pluginName, t); err != nil { return fmt.Errorf("Error parsing %s, %s", path, err) } } default: return fmt.Errorf("Unsupported config format: %s, file %s", pluginName, path) } } case "processors": for pluginName, pluginVal := range subTable.Fields { switch pluginSubTable := pluginVal.(type) { case []*ast.Table: for _, t := range pluginSubTable { if err = c.addProcessor(pluginName, t); err != nil { return fmt.Errorf("Error parsing %s, %s", path, err) } } default: return fmt.Errorf("Unsupported config format: %s, file %s", pluginName, path) } } case "aggregators": for pluginName, pluginVal := range subTable.Fields { switch pluginSubTable := pluginVal.(type) { case []*ast.Table: for _, t := range pluginSubTable { if err = c.addAggregator(pluginName, t); err != nil { return fmt.Errorf("Error parsing %s, %s", path, err) } } default: return fmt.Errorf("Unsupported config format: %s, file %s", pluginName, path) } } // Assume it's an input input for legacy config file support if no other // identifiers are present default: if err = c.addInput(name, subTable); err != nil { return fmt.Errorf("Error parsing %s, %s", path, err) } } } if len(c.Processors) > 1 { sort.Sort(c.Processors) } return nil } // trimBOM trims the Byte-Order-Marks from the beginning of the file. // this is for Windows compatibility only. // see https://github.com/influxdata/telegraf/issues/1378 func trimBOM(f []byte) []byte { return bytes.TrimPrefix(f, []byte("\xef\xbb\xbf")) } // escapeEnv escapes a value for inserting into a TOML string. func escapeEnv(value string) string { return envVarEscaper.Replace(value) } func loadConfig(config string) ([]byte, error) { u, err := url.Parse(config) if err != nil { return nil, err } switch u.Scheme { case "https", "http": return fetchConfig(u) default: // If it isn't a https scheme, try it as a file. } return ioutil.ReadFile(config) } func fetchConfig(u *url.URL) ([]byte, error) { v := os.Getenv("INFLUX_TOKEN") req, err := http.NewRequest("GET", u.String(), nil) if err != nil { return nil, err } req.Header.Add("Authorization", "Token "+v) req.Header.Add("Accept", "application/toml") resp, err := http.DefaultClient.Do(req) if err != nil { return nil, err } defer resp.Body.Close() return ioutil.ReadAll(resp.Body) } // parseConfig loads a TOML configuration from a provided path and // returns the AST produced from the TOML parser. When loading the file, it // will find environment variables and replace them. func parseConfig(contents []byte) (*ast.Table, error) { contents = trimBOM(contents) env_vars := envVarRe.FindAll(contents, -1) for _, env_var := range env_vars { env_val, ok := os.LookupEnv(strings.TrimPrefix(string(env_var), "$")) if ok { env_val = escapeEnv(env_val) contents = bytes.Replace(contents, env_var, []byte(env_val), 1) } } return toml.Parse(contents) } func (c *Config) addAggregator(name string, table *ast.Table) error { creator, ok := aggregators.Aggregators[name] if !ok { return fmt.Errorf("Undefined but requested aggregator: %s", name) } aggregator := creator() conf, err := buildAggregator(name, table) if err != nil { return err } if err := toml.UnmarshalTable(table, aggregator); err != nil { return err } c.Aggregators = append(c.Aggregators, models.NewRunningAggregator(aggregator, conf)) return nil } func (c *Config) addProcessor(name string, table *ast.Table) error { creator, ok := processors.Processors[name] if !ok { return fmt.Errorf("Undefined but requested processor: %s", name) } processor := creator() processorConfig, err := buildProcessor(name, table) if err != nil { return err } if err := toml.UnmarshalTable(table, processor); err != nil { return err } rf := &models.RunningProcessor{ Name: name, Processor: processor, Config: processorConfig, } c.Processors = append(c.Processors, rf) return nil } func (c *Config) addOutput(name string, table *ast.Table) error { if len(c.OutputFilters) > 0 && !sliceContains(name, c.OutputFilters) { return nil } creator, ok := outputs.Outputs[name] if !ok { return fmt.Errorf("Undefined but requested output: %s", name) } output := creator() // If the output has a SetSerializer function, then this means it can write // arbitrary types of output, so build the serializer and set it. switch t := output.(type) { case serializers.SerializerOutput: serializer, err := buildSerializer(name, table) if err != nil { return err } t.SetSerializer(serializer) } outputConfig, err := buildOutput(name, table) if err != nil { return err } if err := toml.UnmarshalTable(table, output); err != nil { return err } ro := models.NewRunningOutput(name, output, outputConfig, c.Agent.MetricBatchSize, c.Agent.MetricBufferLimit) c.Outputs = append(c.Outputs, ro) return nil } func (c *Config) addInput(name string, table *ast.Table) error { if len(c.InputFilters) > 0 && !sliceContains(name, c.InputFilters) { return nil } // Legacy support renaming io input to diskio if name == "io" { name = "diskio" } creator, ok := inputs.Inputs[name] if !ok { return fmt.Errorf("Undefined but requested input: %s", name) } input := creator() // If the input has a SetParser function, then this means it can accept // arbitrary types of input, so build the parser and set it. switch t := input.(type) { case parsers.ParserInput: parser, err := buildParser(name, table) if err != nil { return err } t.SetParser(parser) } switch t := input.(type) { case parsers.ParserFuncInput: config, err := getParserConfig(name, table) if err != nil { return err } t.SetParserFunc(func() (parsers.Parser, error) { return parsers.NewParser(config) }) } pluginConfig, err := buildInput(name, table) if err != nil { return err } if err := toml.UnmarshalTable(table, input); err != nil { return err } rp := models.NewRunningInput(input, pluginConfig) rp.SetDefaultTags(c.Tags) c.Inputs = append(c.Inputs, rp) return nil } // buildAggregator parses Aggregator specific items from the ast.Table, // builds the filter and returns a // models.AggregatorConfig to be inserted into models.RunningAggregator func buildAggregator(name string, tbl *ast.Table) (*models.AggregatorConfig, error) { conf := &models.AggregatorConfig{ Name: name, Delay: time.Millisecond * 100, Period: time.Second * 30, } if node, ok := tbl.Fields["period"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if str, ok := kv.Value.(*ast.String); ok { dur, err := time.ParseDuration(str.Value) if err != nil { return nil, err } conf.Period = dur } } } if node, ok := tbl.Fields["delay"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if str, ok := kv.Value.(*ast.String); ok { dur, err := time.ParseDuration(str.Value) if err != nil { return nil, err } conf.Delay = dur } } } if node, ok := tbl.Fields["drop_original"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if b, ok := kv.Value.(*ast.Boolean); ok { var err error conf.DropOriginal, err = strconv.ParseBool(b.Value) if err != nil { log.Printf("Error parsing boolean value for %s: %s\n", name, err) } } } } if node, ok := tbl.Fields["name_prefix"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if str, ok := kv.Value.(*ast.String); ok { conf.MeasurementPrefix = str.Value } } } if node, ok := tbl.Fields["name_suffix"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if str, ok := kv.Value.(*ast.String); ok { conf.MeasurementSuffix = str.Value } } } if node, ok := tbl.Fields["name_override"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if str, ok := kv.Value.(*ast.String); ok { conf.NameOverride = str.Value } } } conf.Tags = make(map[string]string) if node, ok := tbl.Fields["tags"]; ok { if subtbl, ok := node.(*ast.Table); ok { if err := toml.UnmarshalTable(subtbl, conf.Tags); err != nil { log.Printf("Could not parse tags for input %s\n", name) } } } delete(tbl.Fields, "period") delete(tbl.Fields, "delay") delete(tbl.Fields, "drop_original") delete(tbl.Fields, "name_prefix") delete(tbl.Fields, "name_suffix") delete(tbl.Fields, "name_override") delete(tbl.Fields, "tags") var err error conf.Filter, err = buildFilter(tbl) if err != nil { return conf, err } return conf, nil } // buildProcessor parses Processor specific items from the ast.Table, // builds the filter and returns a // models.ProcessorConfig to be inserted into models.RunningProcessor func buildProcessor(name string, tbl *ast.Table) (*models.ProcessorConfig, error) { conf := &models.ProcessorConfig{Name: name} if node, ok := tbl.Fields["order"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if b, ok := kv.Value.(*ast.Integer); ok { var err error conf.Order, err = strconv.ParseInt(b.Value, 10, 64) if err != nil { log.Printf("Error parsing int value for %s: %s\n", name, err) } } } } delete(tbl.Fields, "order") var err error conf.Filter, err = buildFilter(tbl) if err != nil { return conf, err } return conf, nil } // buildFilter builds a Filter // (tagpass/tagdrop/namepass/namedrop/fieldpass/fielddrop) to // be inserted into the models.OutputConfig/models.InputConfig // to be used for glob filtering on tags and measurements func buildFilter(tbl *ast.Table) (models.Filter, error) { f := models.Filter{} if node, ok := tbl.Fields["namepass"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if ary, ok := kv.Value.(*ast.Array); ok { for _, elem := range ary.Value { if str, ok := elem.(*ast.String); ok { f.NamePass = append(f.NamePass, str.Value) } } } } } if node, ok := tbl.Fields["namedrop"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if ary, ok := kv.Value.(*ast.Array); ok { for _, elem := range ary.Value { if str, ok := elem.(*ast.String); ok { f.NameDrop = append(f.NameDrop, str.Value) } } } } } fields := []string{"pass", "fieldpass"} for _, field := range fields { if node, ok := tbl.Fields[field]; ok { if kv, ok := node.(*ast.KeyValue); ok { if ary, ok := kv.Value.(*ast.Array); ok { for _, elem := range ary.Value { if str, ok := elem.(*ast.String); ok { f.FieldPass = append(f.FieldPass, str.Value) } } } } } } fields = []string{"drop", "fielddrop"} for _, field := range fields { if node, ok := tbl.Fields[field]; ok { if kv, ok := node.(*ast.KeyValue); ok { if ary, ok := kv.Value.(*ast.Array); ok { for _, elem := range ary.Value { if str, ok := elem.(*ast.String); ok { f.FieldDrop = append(f.FieldDrop, str.Value) } } } } } } if node, ok := tbl.Fields["tagpass"]; ok { if subtbl, ok := node.(*ast.Table); ok { for name, val := range subtbl.Fields { if kv, ok := val.(*ast.KeyValue); ok { tagfilter := &models.TagFilter{Name: name} if ary, ok := kv.Value.(*ast.Array); ok { for _, elem := range ary.Value { if str, ok := elem.(*ast.String); ok { tagfilter.Filter = append(tagfilter.Filter, str.Value) } } } f.TagPass = append(f.TagPass, *tagfilter) } } } } if node, ok := tbl.Fields["tagdrop"]; ok { if subtbl, ok := node.(*ast.Table); ok { for name, val := range subtbl.Fields { if kv, ok := val.(*ast.KeyValue); ok { tagfilter := &models.TagFilter{Name: name} if ary, ok := kv.Value.(*ast.Array); ok { for _, elem := range ary.Value { if str, ok := elem.(*ast.String); ok { tagfilter.Filter = append(tagfilter.Filter, str.Value) } } } f.TagDrop = append(f.TagDrop, *tagfilter) } } } } if node, ok := tbl.Fields["tagexclude"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if ary, ok := kv.Value.(*ast.Array); ok { for _, elem := range ary.Value { if str, ok := elem.(*ast.String); ok { f.TagExclude = append(f.TagExclude, str.Value) } } } } } if node, ok := tbl.Fields["taginclude"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if ary, ok := kv.Value.(*ast.Array); ok { for _, elem := range ary.Value { if str, ok := elem.(*ast.String); ok { f.TagInclude = append(f.TagInclude, str.Value) } } } } } if err := f.Compile(); err != nil { return f, err } delete(tbl.Fields, "namedrop") delete(tbl.Fields, "namepass") delete(tbl.Fields, "fielddrop") delete(tbl.Fields, "fieldpass") delete(tbl.Fields, "drop") delete(tbl.Fields, "pass") delete(tbl.Fields, "tagdrop") delete(tbl.Fields, "tagpass") delete(tbl.Fields, "tagexclude") delete(tbl.Fields, "taginclude") return f, nil } // buildInput parses input specific items from the ast.Table, // builds the filter and returns a // models.InputConfig to be inserted into models.RunningInput func buildInput(name string, tbl *ast.Table) (*models.InputConfig, error) { cp := &models.InputConfig{Name: name} if node, ok := tbl.Fields["interval"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if str, ok := kv.Value.(*ast.String); ok { dur, err := time.ParseDuration(str.Value) if err != nil { return nil, err } cp.Interval = dur } } } if node, ok := tbl.Fields["name_prefix"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if str, ok := kv.Value.(*ast.String); ok { cp.MeasurementPrefix = str.Value } } } if node, ok := tbl.Fields["name_suffix"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if str, ok := kv.Value.(*ast.String); ok { cp.MeasurementSuffix = str.Value } } } if node, ok := tbl.Fields["name_override"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if str, ok := kv.Value.(*ast.String); ok { cp.NameOverride = str.Value } } } cp.Tags = make(map[string]string) if node, ok := tbl.Fields["tags"]; ok { if subtbl, ok := node.(*ast.Table); ok { if err := toml.UnmarshalTable(subtbl, cp.Tags); err != nil { log.Printf("E! Could not parse tags for input %s\n", name) } } } delete(tbl.Fields, "name_prefix") delete(tbl.Fields, "name_suffix") delete(tbl.Fields, "name_override") delete(tbl.Fields, "interval") delete(tbl.Fields, "tags") var err error cp.Filter, err = buildFilter(tbl) if err != nil { return cp, err } return cp, nil } // buildParser grabs the necessary entries from the ast.Table for creating // a parsers.Parser object, and creates it, which can then be added onto // an Input object. func buildParser(name string, tbl *ast.Table) (parsers.Parser, error) { config, err := getParserConfig(name, tbl) if err != nil { return nil, err } return parsers.NewParser(config) } func getParserConfig(name string, tbl *ast.Table) (*parsers.Config, error) { c := &parsers.Config{} if node, ok := tbl.Fields["data_format"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if str, ok := kv.Value.(*ast.String); ok { c.DataFormat = str.Value } } } // Legacy support, exec plugin originally parsed JSON by default. if name == "exec" && c.DataFormat == "" { c.DataFormat = "json" } else if c.DataFormat == "" { c.DataFormat = "influx" } if node, ok := tbl.Fields["separator"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if str, ok := kv.Value.(*ast.String); ok { c.Separator = str.Value } } } if node, ok := tbl.Fields["templates"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if ary, ok := kv.Value.(*ast.Array); ok { for _, elem := range ary.Value { if str, ok := elem.(*ast.String); ok { c.Templates = append(c.Templates, str.Value) } } } } } if node, ok := tbl.Fields["tag_keys"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if ary, ok := kv.Value.(*ast.Array); ok { for _, elem := range ary.Value { if str, ok := elem.(*ast.String); ok { c.TagKeys = append(c.TagKeys, str.Value) } } } } } if node, ok := tbl.Fields["json_string_fields"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if ary, ok := kv.Value.(*ast.Array); ok { for _, elem := range ary.Value { if str, ok := elem.(*ast.String); ok { c.JSONStringFields = append(c.JSONStringFields, str.Value) } } } } } if node, ok := tbl.Fields["json_name_key"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if str, ok := kv.Value.(*ast.String); ok { c.JSONNameKey = str.Value } } } if node, ok := tbl.Fields["json_query"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if str, ok := kv.Value.(*ast.String); ok { c.JSONQuery = str.Value } } } if node, ok := tbl.Fields["json_time_key"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if str, ok := kv.Value.(*ast.String); ok { c.JSONTimeKey = str.Value } } } if node, ok := tbl.Fields["json_time_format"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if str, ok := kv.Value.(*ast.String); ok { c.JSONTimeFormat = str.Value } } } if node, ok := tbl.Fields["data_type"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if str, ok := kv.Value.(*ast.String); ok { c.DataType = str.Value } } } if node, ok := tbl.Fields["collectd_auth_file"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if str, ok := kv.Value.(*ast.String); ok { c.CollectdAuthFile = str.Value } } } if node, ok := tbl.Fields["collectd_security_level"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if str, ok := kv.Value.(*ast.String); ok { c.CollectdSecurityLevel = str.Value } } } if node, ok := tbl.Fields["collectd_parse_multivalue"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if str, ok := kv.Value.(*ast.String); ok { c.CollectdSplit = str.Value } } } if node, ok := tbl.Fields["collectd_typesdb"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if ary, ok := kv.Value.(*ast.Array); ok { for _, elem := range ary.Value { if str, ok := elem.(*ast.String); ok { c.CollectdTypesDB = append(c.CollectdTypesDB, str.Value) } } } } } if node, ok := tbl.Fields["dropwizard_metric_registry_path"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if str, ok := kv.Value.(*ast.String); ok { c.DropwizardMetricRegistryPath = str.Value } } } if node, ok := tbl.Fields["dropwizard_time_path"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if str, ok := kv.Value.(*ast.String); ok { c.DropwizardTimePath = str.Value } } } if node, ok := tbl.Fields["dropwizard_time_format"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if str, ok := kv.Value.(*ast.String); ok { c.DropwizardTimeFormat = str.Value } } } if node, ok := tbl.Fields["dropwizard_tags_path"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if str, ok := kv.Value.(*ast.String); ok { c.DropwizardTagsPath = str.Value } } } c.DropwizardTagPathsMap = make(map[string]string) if node, ok := tbl.Fields["dropwizard_tag_paths"]; ok { if subtbl, ok := node.(*ast.Table); ok { for name, val := range subtbl.Fields { if kv, ok := val.(*ast.KeyValue); ok { if str, ok := kv.Value.(*ast.String); ok { c.DropwizardTagPathsMap[name] = str.Value } } } } } //for grok data_format if node, ok := tbl.Fields["grok_named_patterns"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if ary, ok := kv.Value.(*ast.Array); ok { for _, elem := range ary.Value { if str, ok := elem.(*ast.String); ok { c.GrokNamedPatterns = append(c.GrokNamedPatterns, str.Value) } } } } } if node, ok := tbl.Fields["grok_patterns"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if ary, ok := kv.Value.(*ast.Array); ok { for _, elem := range ary.Value { if str, ok := elem.(*ast.String); ok { c.GrokPatterns = append(c.GrokPatterns, str.Value) } } } } } if node, ok := tbl.Fields["grok_custom_patterns"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if str, ok := kv.Value.(*ast.String); ok { c.GrokCustomPatterns = str.Value } } } if node, ok := tbl.Fields["grok_custom_pattern_files"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if ary, ok := kv.Value.(*ast.Array); ok { for _, elem := range ary.Value { if str, ok := elem.(*ast.String); ok { c.GrokCustomPatternFiles = append(c.GrokCustomPatternFiles, str.Value) } } } } } if node, ok := tbl.Fields["grok_timezone"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if str, ok := kv.Value.(*ast.String); ok { c.GrokTimezone = str.Value } } } //for csv parser if node, ok := tbl.Fields["csv_column_names"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if ary, ok := kv.Value.(*ast.Array); ok { for _, elem := range ary.Value { if str, ok := elem.(*ast.String); ok { c.CSVColumnNames = append(c.CSVColumnNames, str.Value) } } } } } if node, ok := tbl.Fields["csv_column_types"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if ary, ok := kv.Value.(*ast.Array); ok { for _, elem := range ary.Value { if str, ok := elem.(*ast.String); ok { c.CSVColumnTypes = append(c.CSVColumnTypes, str.Value) } } } } } if node, ok := tbl.Fields["csv_tag_columns"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if ary, ok := kv.Value.(*ast.Array); ok { for _, elem := range ary.Value { if str, ok := elem.(*ast.String); ok { c.CSVTagColumns = append(c.CSVTagColumns, str.Value) } } } } } if node, ok := tbl.Fields["csv_delimiter"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if str, ok := kv.Value.(*ast.String); ok { c.CSVDelimiter = str.Value } } } if node, ok := tbl.Fields["csv_comment"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if str, ok := kv.Value.(*ast.String); ok { c.CSVComment = str.Value } } } if node, ok := tbl.Fields["csv_measurement_column"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if str, ok := kv.Value.(*ast.String); ok { c.CSVMeasurementColumn = str.Value } } } if node, ok := tbl.Fields["csv_timestamp_column"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if str, ok := kv.Value.(*ast.String); ok { c.CSVTimestampColumn = str.Value } } } if node, ok := tbl.Fields["csv_timestamp_format"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if str, ok := kv.Value.(*ast.String); ok { c.CSVTimestampFormat = str.Value } } } if node, ok := tbl.Fields["csv_header_row_count"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if integer, ok := kv.Value.(*ast.Integer); ok { v, err := integer.Int() if err != nil { return nil, err } c.CSVHeaderRowCount = int(v) } } } if node, ok := tbl.Fields["csv_skip_rows"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if integer, ok := kv.Value.(*ast.Integer); ok { v, err := integer.Int() if err != nil { return nil, err } c.CSVSkipRows = int(v) } } } if node, ok := tbl.Fields["csv_skip_columns"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if integer, ok := kv.Value.(*ast.Integer); ok { v, err := integer.Int() if err != nil { return nil, err } c.CSVSkipColumns = int(v) } } } if node, ok := tbl.Fields["csv_trim_space"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if str, ok := kv.Value.(*ast.Boolean); ok { //for config with no quotes val, err := strconv.ParseBool(str.Value) c.CSVTrimSpace = val if err != nil { return nil, fmt.Errorf("E! parsing to bool: %v", err) } } } } c.MetricName = name delete(tbl.Fields, "data_format") delete(tbl.Fields, "separator") delete(tbl.Fields, "templates") delete(tbl.Fields, "tag_keys") delete(tbl.Fields, "json_name_key") delete(tbl.Fields, "json_query") delete(tbl.Fields, "json_string_fields") delete(tbl.Fields, "json_time_format") delete(tbl.Fields, "json_time_key") delete(tbl.Fields, "data_type") delete(tbl.Fields, "collectd_auth_file") delete(tbl.Fields, "collectd_security_level") delete(tbl.Fields, "collectd_typesdb") delete(tbl.Fields, "collectd_parse_multivalue") delete(tbl.Fields, "dropwizard_metric_registry_path") delete(tbl.Fields, "dropwizard_time_path") delete(tbl.Fields, "dropwizard_time_format") delete(tbl.Fields, "dropwizard_tags_path") delete(tbl.Fields, "dropwizard_tag_paths") delete(tbl.Fields, "grok_named_patterns") delete(tbl.Fields, "grok_patterns") delete(tbl.Fields, "grok_custom_patterns") delete(tbl.Fields, "grok_custom_pattern_files") delete(tbl.Fields, "grok_timezone") delete(tbl.Fields, "csv_column_names") delete(tbl.Fields, "csv_column_types") delete(tbl.Fields, "csv_comment") delete(tbl.Fields, "csv_delimiter") delete(tbl.Fields, "csv_field_columns") delete(tbl.Fields, "csv_header_row_count") delete(tbl.Fields, "csv_measurement_column") delete(tbl.Fields, "csv_skip_columns") delete(tbl.Fields, "csv_skip_rows") delete(tbl.Fields, "csv_tag_columns") delete(tbl.Fields, "csv_timestamp_column") delete(tbl.Fields, "csv_timestamp_format") delete(tbl.Fields, "csv_trim_space") return c, nil } // buildSerializer grabs the necessary entries from the ast.Table for creating // a serializers.Serializer object, and creates it, which can then be added onto // an Output object. func buildSerializer(name string, tbl *ast.Table) (serializers.Serializer, error) { c := &serializers.Config{TimestampUnits: time.Duration(1 * time.Second)} if node, ok := tbl.Fields["data_format"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if str, ok := kv.Value.(*ast.String); ok { c.DataFormat = str.Value } } } if c.DataFormat == "" { c.DataFormat = "influx" } if node, ok := tbl.Fields["prefix"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if str, ok := kv.Value.(*ast.String); ok { c.Prefix = str.Value } } } if node, ok := tbl.Fields["template"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if str, ok := kv.Value.(*ast.String); ok { c.Template = str.Value } } } if node, ok := tbl.Fields["influx_max_line_bytes"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if integer, ok := kv.Value.(*ast.Integer); ok { v, err := integer.Int() if err != nil { return nil, err } c.InfluxMaxLineBytes = int(v) } } } if node, ok := tbl.Fields["influx_sort_fields"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if b, ok := kv.Value.(*ast.Boolean); ok { var err error c.InfluxSortFields, err = b.Boolean() if err != nil { return nil, err } } } } if node, ok := tbl.Fields["influx_uint_support"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if b, ok := kv.Value.(*ast.Boolean); ok { var err error c.InfluxUintSupport, err = b.Boolean() if err != nil { return nil, err } } } } if node, ok := tbl.Fields["graphite_tag_support"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if b, ok := kv.Value.(*ast.Boolean); ok { var err error c.GraphiteTagSupport, err = b.Boolean() if err != nil { return nil, err } } } } if node, ok := tbl.Fields["json_timestamp_units"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if str, ok := kv.Value.(*ast.String); ok { timestampVal, err := time.ParseDuration(str.Value) if err != nil { return nil, fmt.Errorf("Unable to parse json_timestamp_units as a duration, %s", err) } // now that we have a duration, truncate it to the nearest // power of ten (just in case) nearest_exponent := int64(math.Log10(float64(timestampVal.Nanoseconds()))) new_nanoseconds := int64(math.Pow(10.0, float64(nearest_exponent))) c.TimestampUnits = time.Duration(new_nanoseconds) } } } if node, ok := tbl.Fields["splunkmetric_hec_routing"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if b, ok := kv.Value.(*ast.Boolean); ok { var err error c.HecRouting, err = b.Boolean() if err != nil { return nil, err } } } } delete(tbl.Fields, "influx_max_line_bytes") delete(tbl.Fields, "influx_sort_fields") delete(tbl.Fields, "influx_uint_support") delete(tbl.Fields, "graphite_tag_support") delete(tbl.Fields, "data_format") delete(tbl.Fields, "prefix") delete(tbl.Fields, "template") delete(tbl.Fields, "json_timestamp_units") delete(tbl.Fields, "splunkmetric_hec_routing") return serializers.NewSerializer(c) } // buildOutput parses output specific items from the ast.Table, // builds the filter and returns an // models.OutputConfig to be inserted into models.RunningInput // Note: error exists in the return for future calls that might require error func buildOutput(name string, tbl *ast.Table) (*models.OutputConfig, error) { filter, err := buildFilter(tbl) if err != nil { return nil, err } oc := &models.OutputConfig{ Name: name, Filter: filter, } // TODO // Outputs don't support FieldDrop/FieldPass, so set to NameDrop/NamePass if len(oc.Filter.FieldDrop) > 0 { oc.Filter.NameDrop = oc.Filter.FieldDrop } if len(oc.Filter.FieldPass) > 0 { oc.Filter.NamePass = oc.Filter.FieldPass } if node, ok := tbl.Fields["flush_interval"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if str, ok := kv.Value.(*ast.String); ok { dur, err := time.ParseDuration(str.Value) if err != nil { return nil, err } oc.FlushInterval = dur } } } if node, ok := tbl.Fields["metric_buffer_limit"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if integer, ok := kv.Value.(*ast.Integer); ok { v, err := integer.Int() if err != nil { return nil, err } oc.MetricBufferLimit = int(v) } } } if node, ok := tbl.Fields["metric_batch_size"]; ok { if kv, ok := node.(*ast.KeyValue); ok { if integer, ok := kv.Value.(*ast.Integer); ok { v, err := integer.Int() if err != nil { return nil, err } oc.MetricBatchSize = int(v) } } } delete(tbl.Fields, "flush_interval") delete(tbl.Fields, "metric_buffer_limit") delete(tbl.Fields, "metric_batch_size") return oc, nil }