package stackdriver import ( "context" "fmt" "math" "strconv" "strings" "sync" "time" monitoring "cloud.google.com/go/monitoring/apiv3" googlepbduration "github.com/golang/protobuf/ptypes/duration" googlepbts "github.com/golang/protobuf/ptypes/timestamp" "github.com/influxdata/telegraf" "github.com/influxdata/telegraf/internal" "github.com/influxdata/telegraf/internal/limiter" "github.com/influxdata/telegraf/metric" "github.com/influxdata/telegraf/plugins/inputs" // Imports the Stackdriver Monitoring client package. "github.com/influxdata/telegraf/selfstat" "google.golang.org/api/iterator" distributionpb "google.golang.org/genproto/googleapis/api/distribution" metricpb "google.golang.org/genproto/googleapis/api/metric" monitoringpb "google.golang.org/genproto/googleapis/monitoring/v3" ) const ( defaultRateLimit = 14 description = "Gather timeseries from Google Cloud Platform v3 monitoring API" sampleConfig = ` ## GCP Project project = "erudite-bloom-151019" ## Include timeseries that start with the given metric type. metric_type_prefix_include = [ "compute.googleapis.com/", ] ## Exclude timeseries that start with the given metric type. # metric_type_prefix_exclude = [] ## Many metrics are updated once per minute; it is recommended to override ## the agent level interval with a value of 1m or greater. interval = "1m" ## Maximum number of API calls to make per second. The quota for accounts ## varies, it can be viewed on the API dashboard: ## https://cloud.google.com/monitoring/quotas#quotas_and_limits # rate_limit = 14 ## The delay and window options control the number of points selected on ## each gather. When set, metrics are gathered between: ## start: now() - delay - window ## end: now() - delay # ## Collection delay; if set too low metrics may not yet be available. # delay = "5m" # ## If unset, the window will start at 1m and be updated dynamically to span ## the time between calls (approximately the length of the plugin interval). # window = "1m" ## TTL for cached list of metric types. This is the maximum amount of time ## it may take to discover new metrics. # cache_ttl = "1h" ## If true, raw bucket counts are collected for distribution value types. ## For a more lightweight collection, you may wish to disable and use ## distribution_aggregation_aligners instead. # gather_raw_distribution_buckets = true ## Aggregate functions to be used for metrics whose value type is ## distribution. These aggregate values are recorded in in addition to raw ## bucket counts; if they are enabled. ## ## For a list of aligner strings see: ## https://cloud.google.com/monitoring/api/ref_v3/rpc/google.monitoring.v3#aligner # distribution_aggregation_aligners = [ # "ALIGN_PERCENTILE_99", # "ALIGN_PERCENTILE_95", # "ALIGN_PERCENTILE_50", # ] ## Filters can be added to reduce the number of time series matched. All ## functions are supported: starts_with, ends_with, has_substring, and ## one_of. Only the '=' operator is supported. ## ## The logical operators when combining filters are defined statically using ## the following values: ## filter ::= {AND } ## resource_labels ::= {OR } ## metric_labels ::= {OR } ## ## For more details, see https://cloud.google.com/monitoring/api/v3/filters # ## Resource labels refine the time series selection with the following expression: ## resource.labels. = # [[inputs.stackdriver.filter.resource_labels]] # key = "instance_name" # value = 'starts_with("localhost")' # ## Metric labels refine the time series selection with the following expression: ## metric.labels. = # [[inputs.stackdriver.filter.metric_labels]] # key = "device_name" # value = 'one_of("sda", "sdb")' ` ) var ( defaultCacheTTL = internal.Duration{Duration: 1 * time.Hour} defaultWindow = internal.Duration{Duration: 1 * time.Minute} defaultDelay = internal.Duration{Duration: 5 * time.Minute} ) type ( // Stackdriver is the Google Stackdriver config info. Stackdriver struct { Project string `toml:"project"` RateLimit int `toml:"rate_limit"` Window internal.Duration `toml:"window"` Delay internal.Duration `toml:"delay"` CacheTTL internal.Duration `toml:"cache_ttl"` MetricTypePrefixInclude []string `toml:"metric_type_prefix_include"` MetricTypePrefixExclude []string `toml:"metric_type_prefix_exclude"` GatherRawDistributionBuckets bool `toml:"gather_raw_distribution_buckets"` DistributionAggregationAligners []string `toml:"distribution_aggregation_aligners"` Filter *ListTimeSeriesFilter `toml:"filter"` Log telegraf.Logger client metricClient timeSeriesConfCache *timeSeriesConfCache prevEnd time.Time } // ListTimeSeriesFilter contains resource labels and metric labels ListTimeSeriesFilter struct { ResourceLabels []*Label `json:"resource_labels"` MetricLabels []*Label `json:"metric_labels"` } // Label contains key and value Label struct { Key string `toml:"key"` Value string `toml:"value"` } // TimeSeriesConfCache caches generated timeseries configurations timeSeriesConfCache struct { TTL time.Duration Generated time.Time TimeSeriesConfs []*timeSeriesConf } // Internal structure which holds our configuration for a particular GCP time // series. timeSeriesConf struct { // The influx measurement name this time series maps to measurement string // The prefix to use before any influx field names that we'll write for // this time series. (Or, if we only decide to write one field name, this // field just holds the value of the field name.) fieldKey string // The GCP API request that we'll use to fetch data for this time series. listTimeSeriesRequest *monitoringpb.ListTimeSeriesRequest } // stackdriverMetricClient is a metric client for stackdriver stackdriverMetricClient struct { log telegraf.Logger conn *monitoring.MetricClient listMetricDescriptorsCalls selfstat.Stat listTimeSeriesCalls selfstat.Stat } // metricClient is convenient for testing metricClient interface { ListMetricDescriptors(ctx context.Context, req *monitoringpb.ListMetricDescriptorsRequest) (<-chan *metricpb.MetricDescriptor, error) ListTimeSeries(ctx context.Context, req *monitoringpb.ListTimeSeriesRequest) (<-chan *monitoringpb.TimeSeries, error) Close() error } lockedSeriesGrouper struct { sync.Mutex *metric.SeriesGrouper } ) func (g *lockedSeriesGrouper) Add( measurement string, tags map[string]string, tm time.Time, field string, fieldValue interface{}, ) error { g.Lock() defer g.Unlock() return g.SeriesGrouper.Add(measurement, tags, tm, field, fieldValue) } // ListMetricDescriptors implements metricClient interface func (c *stackdriverMetricClient) ListMetricDescriptors( ctx context.Context, req *monitoringpb.ListMetricDescriptorsRequest, ) (<-chan *metricpb.MetricDescriptor, error) { mdChan := make(chan *metricpb.MetricDescriptor, 1000) go func() { c.log.Debugf("List metric descriptor request filter: %s", req.Filter) defer close(mdChan) // Iterate over metric descriptors and send them to buffered channel mdResp := c.conn.ListMetricDescriptors(ctx, req) c.listMetricDescriptorsCalls.Incr(1) for { mdDesc, mdErr := mdResp.Next() if mdErr != nil { if mdErr != iterator.Done { c.log.Errorf("Failed iterating metric descriptor responses: %q: %v", req.String(), mdErr) } break } mdChan <- mdDesc } }() return mdChan, nil } // ListTimeSeries implements metricClient interface func (c *stackdriverMetricClient) ListTimeSeries( ctx context.Context, req *monitoringpb.ListTimeSeriesRequest, ) (<-chan *monitoringpb.TimeSeries, error) { tsChan := make(chan *monitoringpb.TimeSeries, 1000) go func() { c.log.Debugf("List time series request filter: %s", req.Filter) defer close(tsChan) // Iterate over timeseries and send them to buffered channel tsResp := c.conn.ListTimeSeries(ctx, req) c.listTimeSeriesCalls.Incr(1) for { tsDesc, tsErr := tsResp.Next() if tsErr != nil { if tsErr != iterator.Done { c.log.Errorf("Failed iterating time series responses: %q: %v", req.String(), tsErr) } break } tsChan <- tsDesc } }() return tsChan, nil } // Close implements metricClient interface func (s *stackdriverMetricClient) Close() error { return s.conn.Close() } // Description implements telegraf.Input interface func (s *Stackdriver) Description() string { return description } // SampleConfig implements telegraf.Input interface func (s *Stackdriver) SampleConfig() string { return sampleConfig } // Gather implements telegraf.Input interface func (s *Stackdriver) Gather(acc telegraf.Accumulator) error { ctx := context.Background() if s.RateLimit == 0 { s.RateLimit = defaultRateLimit } err := s.initializeStackdriverClient(ctx) if err != nil { return err } start, end := s.updateWindow(s.prevEnd) s.prevEnd = end tsConfs, err := s.generatetimeSeriesConfs(ctx, start, end) if err != nil { return err } lmtr := limiter.NewRateLimiter(s.RateLimit, time.Second) defer lmtr.Stop() grouper := &lockedSeriesGrouper{ SeriesGrouper: metric.NewSeriesGrouper(), } var wg sync.WaitGroup wg.Add(len(tsConfs)) for _, tsConf := range tsConfs { <-lmtr.C go func(tsConf *timeSeriesConf) { defer wg.Done() acc.AddError(s.gatherTimeSeries(ctx, grouper, tsConf)) }(tsConf) } wg.Wait() for _, metric := range grouper.Metrics() { acc.AddMetric(metric) } return nil } // Returns the start and end time for the next collection. func (s *Stackdriver) updateWindow(prevEnd time.Time) (time.Time, time.Time) { var start time.Time if s.Window.Duration != 0 { start = time.Now().Add(-s.Delay.Duration).Add(-s.Window.Duration) } else if prevEnd.IsZero() { start = time.Now().Add(-s.Delay.Duration).Add(-defaultWindow.Duration) } else { start = prevEnd } end := time.Now().Add(-s.Delay.Duration) return start, end } // Generate filter string for ListTimeSeriesRequest func (s *Stackdriver) newListTimeSeriesFilter(metricType string) string { functions := []string{ "starts_with", "ends_with", "has_substring", "one_of", } filterString := fmt.Sprintf(`metric.type = "%s"`, metricType) if s.Filter == nil { return filterString } var valueFmt string if len(s.Filter.ResourceLabels) > 0 { resourceLabelsFilter := make([]string, len(s.Filter.ResourceLabels)) for i, resourceLabel := range s.Filter.ResourceLabels { // check if resource label value contains function if includeExcludeHelper(resourceLabel.Value, functions, nil) { valueFmt = `resource.labels.%s = %s` } else { valueFmt = `resource.labels.%s = "%s"` } resourceLabelsFilter[i] = fmt.Sprintf(valueFmt, resourceLabel.Key, resourceLabel.Value) } if len(resourceLabelsFilter) == 1 { filterString += fmt.Sprintf(" AND %s", resourceLabelsFilter[0]) } else { filterString += fmt.Sprintf(" AND (%s)", strings.Join(resourceLabelsFilter, " OR ")) } } if len(s.Filter.MetricLabels) > 0 { metricLabelsFilter := make([]string, len(s.Filter.MetricLabels)) for i, metricLabel := range s.Filter.MetricLabels { // check if metric label value contains function if includeExcludeHelper(metricLabel.Value, functions, nil) { valueFmt = `metric.labels.%s = %s` } else { valueFmt = `metric.labels.%s = "%s"` } metricLabelsFilter[i] = fmt.Sprintf(valueFmt, metricLabel.Key, metricLabel.Value) } if len(metricLabelsFilter) == 1 { filterString += fmt.Sprintf(" AND %s", metricLabelsFilter[0]) } else { filterString += fmt.Sprintf(" AND (%s)", strings.Join(metricLabelsFilter, " OR ")) } } return filterString } // Create and initialize a timeSeriesConf for a given GCP metric type with // defaults taken from the gcp_stackdriver plugin configuration. func (s *Stackdriver) newTimeSeriesConf( metricType string, startTime, endTime time.Time, ) *timeSeriesConf { filter := s.newListTimeSeriesFilter(metricType) interval := &monitoringpb.TimeInterval{ EndTime: &googlepbts.Timestamp{Seconds: endTime.Unix()}, StartTime: &googlepbts.Timestamp{Seconds: startTime.Unix()}, } tsReq := &monitoringpb.ListTimeSeriesRequest{ Name: monitoring.MetricProjectPath(s.Project), Filter: filter, Interval: interval, } cfg := &timeSeriesConf{ measurement: metricType, fieldKey: "value", listTimeSeriesRequest: tsReq, } // GCP metric types have at least one slash, but we'll be defensive anyway. slashIdx := strings.LastIndex(metricType, "/") if slashIdx > 0 { cfg.measurement = metricType[:slashIdx] cfg.fieldKey = metricType[slashIdx+1:] } return cfg } // Change this configuration to query an aggregate by specifying an "aligner". // In GCP monitoring, "aligning" is aggregation performed *within* a time // series, to distill a pile of data points down to a single data point for // some given time period (here, we specify 60s as our time period). This is // especially useful for scraping GCP "distribution" metric types, whose raw // data amounts to a ~60 bucket histogram, which is fairly hard to query and // visualize in the TICK stack. func (t *timeSeriesConf) initForAggregate(alignerStr string) { // Check if alignerStr is valid alignerInt, isValid := monitoringpb.Aggregation_Aligner_value[alignerStr] if !isValid { alignerStr = monitoringpb.Aggregation_Aligner_name[alignerInt] } aligner := monitoringpb.Aggregation_Aligner(alignerInt) agg := &monitoringpb.Aggregation{ AlignmentPeriod: &googlepbduration.Duration{Seconds: 60}, PerSeriesAligner: aligner, } t.fieldKey = t.fieldKey + "_" + strings.ToLower(alignerStr) t.listTimeSeriesRequest.Aggregation = agg } // IsValid checks timeseriesconf cache validity func (c *timeSeriesConfCache) IsValid() bool { return c.TimeSeriesConfs != nil && time.Since(c.Generated) < c.TTL } func (s *Stackdriver) initializeStackdriverClient(ctx context.Context) error { if s.client == nil { client, err := monitoring.NewMetricClient(ctx) if err != nil { return fmt.Errorf("failed to create stackdriver monitoring client: %v", err) } tags := map[string]string{ "project_id": s.Project, } listMetricDescriptorsCalls := selfstat.Register( "stackdriver", "list_metric_descriptors_calls", tags) listTimeSeriesCalls := selfstat.Register( "stackdriver", "list_timeseries_calls", tags) s.client = &stackdriverMetricClient{ log: s.Log, conn: client, listMetricDescriptorsCalls: listMetricDescriptorsCalls, listTimeSeriesCalls: listTimeSeriesCalls, } } return nil } func includeExcludeHelper(key string, includes []string, excludes []string) bool { if len(includes) > 0 { for _, includeStr := range includes { if strings.HasPrefix(key, includeStr) { return true } } return false } if len(excludes) > 0 { for _, excludeStr := range excludes { if strings.HasPrefix(key, excludeStr) { return false } } return true } return true } // Test whether a particular GCP metric type should be scraped by this plugin // by checking the plugin name against the configuration's // "includeMetricTypePrefixes" and "excludeMetricTypePrefixes" func (s *Stackdriver) includeMetricType(metricType string) bool { k := metricType inc := s.MetricTypePrefixInclude exc := s.MetricTypePrefixExclude return includeExcludeHelper(k, inc, exc) } // Generates filter for list metric descriptors request func (s *Stackdriver) newListMetricDescriptorsFilters() []string { if len(s.MetricTypePrefixInclude) == 0 { return nil } metricTypeFilters := make([]string, len(s.MetricTypePrefixInclude)) for i, metricTypePrefix := range s.MetricTypePrefixInclude { metricTypeFilters[i] = fmt.Sprintf(`metric.type = starts_with(%q)`, metricTypePrefix) } return metricTypeFilters } // Generate a list of timeSeriesConfig structs by making a ListMetricDescriptors // API request and filtering the result against our configuration. func (s *Stackdriver) generatetimeSeriesConfs( ctx context.Context, startTime, endTime time.Time, ) ([]*timeSeriesConf, error) { if s.timeSeriesConfCache != nil && s.timeSeriesConfCache.IsValid() { // Update interval for timeseries requests in timeseries cache interval := &monitoringpb.TimeInterval{ EndTime: &googlepbts.Timestamp{Seconds: endTime.Unix()}, StartTime: &googlepbts.Timestamp{Seconds: startTime.Unix()}, } for _, timeSeriesConf := range s.timeSeriesConfCache.TimeSeriesConfs { timeSeriesConf.listTimeSeriesRequest.Interval = interval } return s.timeSeriesConfCache.TimeSeriesConfs, nil } ret := []*timeSeriesConf{} req := &monitoringpb.ListMetricDescriptorsRequest{ Name: monitoring.MetricProjectPath(s.Project), } filters := s.newListMetricDescriptorsFilters() if len(filters) == 0 { filters = []string{""} } for _, filter := range filters { // Add filter for list metric descriptors if // includeMetricTypePrefixes is specified, // this is more efficient than iterating over // all metric descriptors req.Filter = filter mdRespChan, err := s.client.ListMetricDescriptors(ctx, req) if err != nil { return nil, err } for metricDescriptor := range mdRespChan { metricType := metricDescriptor.Type valueType := metricDescriptor.ValueType if filter == "" && !s.includeMetricType(metricType) { continue } if valueType == metricpb.MetricDescriptor_DISTRIBUTION { if s.GatherRawDistributionBuckets { tsConf := s.newTimeSeriesConf(metricType, startTime, endTime) ret = append(ret, tsConf) } for _, alignerStr := range s.DistributionAggregationAligners { tsConf := s.newTimeSeriesConf(metricType, startTime, endTime) tsConf.initForAggregate(alignerStr) ret = append(ret, tsConf) } } else { ret = append(ret, s.newTimeSeriesConf(metricType, startTime, endTime)) } } } s.timeSeriesConfCache = &timeSeriesConfCache{ TimeSeriesConfs: ret, Generated: time.Now(), TTL: s.CacheTTL.Duration, } return ret, nil } // Do the work to gather an individual time series. Runs inside a // timeseries-specific goroutine. func (s *Stackdriver) gatherTimeSeries( ctx context.Context, grouper *lockedSeriesGrouper, tsConf *timeSeriesConf, ) error { tsReq := tsConf.listTimeSeriesRequest tsRespChan, err := s.client.ListTimeSeries(ctx, tsReq) if err != nil { return err } for tsDesc := range tsRespChan { tags := map[string]string{ "resource_type": tsDesc.Resource.Type, } for k, v := range tsDesc.Resource.Labels { tags[k] = v } for k, v := range tsDesc.Metric.Labels { tags[k] = v } for _, p := range tsDesc.Points { ts := time.Unix(p.Interval.EndTime.Seconds, 0) if tsDesc.ValueType == metricpb.MetricDescriptor_DISTRIBUTION { dist := p.Value.GetDistributionValue() s.addDistribution(dist, tags, ts, grouper, tsConf) } else { var value interface{} // Types that are valid to be assigned to Value // See: https://godoc.org/google.golang.org/genproto/googleapis/monitoring/v3#TypedValue switch tsDesc.ValueType { case metricpb.MetricDescriptor_BOOL: value = p.Value.GetBoolValue() case metricpb.MetricDescriptor_INT64: value = p.Value.GetInt64Value() case metricpb.MetricDescriptor_DOUBLE: value = p.Value.GetDoubleValue() case metricpb.MetricDescriptor_STRING: value = p.Value.GetStringValue() } grouper.Add(tsConf.measurement, tags, ts, tsConf.fieldKey, value) } } } return nil } // AddDistribution adds metrics from a distribution value type. func (s *Stackdriver) addDistribution( metric *distributionpb.Distribution, tags map[string]string, ts time.Time, grouper *lockedSeriesGrouper, tsConf *timeSeriesConf, ) { field := tsConf.fieldKey name := tsConf.measurement grouper.Add(name, tags, ts, field+"_count", metric.Count) grouper.Add(name, tags, ts, field+"_mean", metric.Mean) grouper.Add(name, tags, ts, field+"_sum_of_squared_deviation", metric.SumOfSquaredDeviation) if metric.Range != nil { grouper.Add(name, tags, ts, field+"_range_min", metric.Range.Min) grouper.Add(name, tags, ts, field+"_range_max", metric.Range.Max) } linearBuckets := metric.BucketOptions.GetLinearBuckets() exponentialBuckets := metric.BucketOptions.GetExponentialBuckets() explicitBuckets := metric.BucketOptions.GetExplicitBuckets() var numBuckets int32 if linearBuckets != nil { numBuckets = linearBuckets.NumFiniteBuckets + 2 } else if exponentialBuckets != nil { numBuckets = exponentialBuckets.NumFiniteBuckets + 2 } else { numBuckets = int32(len(explicitBuckets.Bounds)) + 1 } var i int32 var count int64 for i = 0; i < numBuckets; i++ { // The last bucket is the overflow bucket, and includes all values // greater than the previous bound. if i == numBuckets-1 { tags["lt"] = "+Inf" } else { var upperBound float64 if linearBuckets != nil { upperBound = linearBuckets.Offset + (linearBuckets.Width * float64(i)) } else if exponentialBuckets != nil { width := math.Pow(exponentialBuckets.GrowthFactor, float64(i)) upperBound = exponentialBuckets.Scale * width } else if explicitBuckets != nil { upperBound = explicitBuckets.Bounds[i] } tags["lt"] = strconv.FormatFloat(upperBound, 'f', -1, 64) } // Add to the cumulative count; trailing buckets with value 0 are // omitted from the response. if i < int32(len(metric.BucketCounts)) { count += metric.BucketCounts[i] } grouper.Add(name, tags, ts, field+"_bucket", count) } } func init() { f := func() telegraf.Input { return &Stackdriver{ CacheTTL: defaultCacheTTL, RateLimit: defaultRateLimit, Delay: defaultDelay, GatherRawDistributionBuckets: true, DistributionAggregationAligners: []string{}, } } inputs.Add("stackdriver", f) }