package statsd import ( "errors" "fmt" "log" "net" "sort" "strconv" "strings" "sync" "time" "github.com/influxdata/telegraf/plugins/parsers/graphite" "github.com/influxdata/telegraf" "github.com/influxdata/telegraf/plugins/inputs" ) const ( UDP_PACKET_SIZE int = 1500 defaultFieldName = "value" ) var dropwarn = "ERROR: Message queue full. Discarding line [%s] " + "You may want to increase allowed_pending_messages in the config\n" var prevInstance *Statsd type Statsd struct { // Address & Port to serve from ServiceAddress string // Number of messages allowed to queue up in between calls to Gather. If this // fills up, packets will get dropped until the next Gather interval is ran. AllowedPendingMessages int // Percentiles specifies the percentiles that will be calculated for timing // and histogram stats. Percentiles []int PercentileLimit int DeleteGauges bool DeleteCounters bool DeleteSets bool DeleteTimings bool ConvertNames bool // This flag enables parsing of tags in the dogstatsd extention to the // statsd protocol (http://docs.datadoghq.com/guides/dogstatsd/) ParseDataDogTags bool // UDPPacketSize is the size of the read packets for the server listening // for statsd UDP packets. This will default to 1500 bytes. UDPPacketSize int `toml:"udp_packet_size"` sync.Mutex wg sync.WaitGroup // Channel for all incoming statsd packets in chan []byte done chan struct{} // Cache gauges, counters & sets so they can be aggregated as they arrive // gauges and counters map measurement/tags hash -> field name -> metrics // sets and timings map measurement/tags hash -> metrics gauges map[string]cachedgauge counters map[string]cachedcounter sets map[string]cachedset timings map[string]cachedtimings // bucket -> influx templates Templates []string listener *net.UDPConn } func NewStatsd() *Statsd { s := Statsd{} // Make data structures s.done = make(chan struct{}) s.in = make(chan []byte, s.AllowedPendingMessages) s.gauges = make(map[string]cachedgauge) s.counters = make(map[string]cachedcounter) s.sets = make(map[string]cachedset) s.timings = make(map[string]cachedtimings) s.ConvertNames = true s.UDPPacketSize = UDP_PACKET_SIZE return &s } // One statsd metric, form is :||@ type metric struct { name string field string bucket string hash string intvalue int64 floatvalue float64 mtype string additive bool samplerate float64 tags map[string]string } type cachedset struct { name string fields map[string]map[int64]bool tags map[string]string } type cachedgauge struct { name string fields map[string]interface{} tags map[string]string } type cachedcounter struct { name string fields map[string]interface{} tags map[string]string } type cachedtimings struct { name string fields map[string]RunningStats tags map[string]string } func (_ *Statsd) Description() string { return "Statsd Server" } const sampleConfig = ` ## Address and port to host UDP listener on service_address = ":8125" ## Delete gauges every interval (default=false) delete_gauges = false ## Delete counters every interval (default=false) delete_counters = false ## Delete sets every interval (default=false) delete_sets = false ## Delete timings & histograms every interval (default=true) delete_timings = true ## Percentiles to calculate for timing & histogram stats percentiles = [90] ## convert measurement names, "." to "_" and "-" to "__" convert_names = true ## Parses tags in the datadog statsd format ## http://docs.datadoghq.com/guides/dogstatsd/ parse_data_dog_tags = false ## Statsd data translation templates, more info can be read here: ## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md#graphite # templates = [ # "cpu.* measurement*" # ] ## Number of UDP messages allowed to queue up, once filled, ## the statsd server will start dropping packets allowed_pending_messages = 10000 ## Number of timing/histogram values to track per-measurement in the ## calculation of percentiles. Raising this limit increases the accuracy ## of percentiles but also increases the memory usage and cpu time. percentile_limit = 1000 ## UDP packet size for the server to listen for. This will depend on the size ## of the packets that the client is sending, which is usually 1500 bytes. udp_packet_size = 1500 ` func (_ *Statsd) SampleConfig() string { return sampleConfig } func (s *Statsd) Gather(acc telegraf.Accumulator) error { s.Lock() defer s.Unlock() now := time.Now() for _, metric := range s.timings { // Defining a template to parse field names for timers allows us to split // out multiple fields per timer. In this case we prefix each stat with the // field name and store these all in a single measurement. fields := make(map[string]interface{}) for fieldName, stats := range metric.fields { var prefix string if fieldName != defaultFieldName { prefix = fieldName + "_" } fields[prefix+"mean"] = stats.Mean() fields[prefix+"stddev"] = stats.Stddev() fields[prefix+"upper"] = stats.Upper() fields[prefix+"lower"] = stats.Lower() fields[prefix+"count"] = stats.Count() for _, percentile := range s.Percentiles { name := fmt.Sprintf("%s%v_percentile", prefix, percentile) fields[name] = stats.Percentile(percentile) } } acc.AddFields(metric.name, fields, metric.tags, now) } if s.DeleteTimings { s.timings = make(map[string]cachedtimings) } for _, metric := range s.gauges { acc.AddFields(metric.name, metric.fields, metric.tags, now) } if s.DeleteGauges { s.gauges = make(map[string]cachedgauge) } for _, metric := range s.counters { acc.AddFields(metric.name, metric.fields, metric.tags, now) } if s.DeleteCounters { s.counters = make(map[string]cachedcounter) } for _, metric := range s.sets { fields := make(map[string]interface{}) for field, set := range metric.fields { fields[field] = int64(len(set)) } acc.AddFields(metric.name, fields, metric.tags, now) } if s.DeleteSets { s.sets = make(map[string]cachedset) } return nil } func (s *Statsd) Start(_ telegraf.Accumulator) error { // Make data structures s.done = make(chan struct{}) s.in = make(chan []byte, s.AllowedPendingMessages) if prevInstance == nil { s.gauges = make(map[string]cachedgauge) s.counters = make(map[string]cachedcounter) s.sets = make(map[string]cachedset) s.timings = make(map[string]cachedtimings) } else { s.gauges = prevInstance.gauges s.counters = prevInstance.counters s.sets = prevInstance.sets s.timings = prevInstance.timings } s.wg.Add(2) // Start the UDP listener go s.udpListen() // Start the line parser go s.parser() log.Printf("Started the statsd service on %s\n", s.ServiceAddress) prevInstance = s return nil } // udpListen starts listening for udp packets on the configured port. func (s *Statsd) udpListen() error { defer s.wg.Done() var err error address, _ := net.ResolveUDPAddr("udp", s.ServiceAddress) s.listener, err = net.ListenUDP("udp", address) if err != nil { log.Fatalf("ERROR: ListenUDP - %s", err) } log.Println("Statsd listener listening on: ", s.listener.LocalAddr().String()) for { select { case <-s.done: return nil default: buf := make([]byte, s.UDPPacketSize) n, _, err := s.listener.ReadFromUDP(buf) if err != nil && !strings.Contains(err.Error(), "closed network") { log.Printf("ERROR READ: %s\n", err.Error()) continue } select { case s.in <- buf[:n]: default: log.Printf(dropwarn, string(buf[:n])) } } } } // parser monitors the s.in channel, if there is a packet ready, it parses the // packet into statsd strings and then calls parseStatsdLine, which parses a // single statsd metric into a struct. func (s *Statsd) parser() error { defer s.wg.Done() for { select { case <-s.done: return nil case packet := <-s.in: lines := strings.Split(string(packet), "\n") for _, line := range lines { line = strings.TrimSpace(line) if line != "" { s.parseStatsdLine(line) } } } } } // parseStatsdLine will parse the given statsd line, validating it as it goes. // If the line is valid, it will be cached for the next call to Gather() func (s *Statsd) parseStatsdLine(line string) error { s.Lock() defer s.Unlock() lineTags := make(map[string]string) if s.ParseDataDogTags { recombinedSegments := make([]string, 0) // datadog tags look like this: // users.online:1|c|@0.5|#country:china,environment:production // users.online:1|c|#sometagwithnovalue // we will split on the pipe and remove any elements that are datadog // tags, parse them, and rebuild the line sans the datadog tags pipesplit := strings.Split(line, "|") for _, segment := range pipesplit { if len(segment) > 0 && segment[0] == '#' { // we have ourselves a tag; they are comma separated tagstr := segment[1:] tags := strings.Split(tagstr, ",") for _, tag := range tags { ts := strings.Split(tag, ":") var k, v string switch len(ts) { case 1: // just a tag k = ts[0] v = "" case 2: k = ts[0] v = ts[1] } if k != "" { lineTags[k] = v } } } else { recombinedSegments = append(recombinedSegments, segment) } } line = strings.Join(recombinedSegments, "|") } // Validate splitting the line on ":" bits := strings.Split(line, ":") if len(bits) < 2 { log.Printf("Error: splitting ':', Unable to parse metric: %s\n", line) return errors.New("Error Parsing statsd line") } // Extract bucket name from individual metric bits bucketName, bits := bits[0], bits[1:] // Add a metric for each bit available for _, bit := range bits { m := metric{} m.bucket = bucketName // Validate splitting the bit on "|" pipesplit := strings.Split(bit, "|") if len(pipesplit) < 2 { log.Printf("Error: splitting '|', Unable to parse metric: %s\n", line) return errors.New("Error Parsing statsd line") } else if len(pipesplit) > 2 { sr := pipesplit[2] errmsg := "Error: parsing sample rate, %s, it must be in format like: " + "@0.1, @0.5, etc. Ignoring sample rate for line: %s\n" if strings.Contains(sr, "@") && len(sr) > 1 { samplerate, err := strconv.ParseFloat(sr[1:], 64) if err != nil { log.Printf(errmsg, err.Error(), line) } else { // sample rate successfully parsed m.samplerate = samplerate } } else { log.Printf(errmsg, "", line) } } // Validate metric type switch pipesplit[1] { case "g", "c", "s", "ms", "h": m.mtype = pipesplit[1] default: log.Printf("Error: Statsd Metric type %s unsupported", pipesplit[1]) return errors.New("Error Parsing statsd line") } // Parse the value if strings.ContainsAny(pipesplit[0], "-+") { if m.mtype != "g" { log.Printf("Error: +- values are only supported for gauges: %s\n", line) return errors.New("Error Parsing statsd line") } m.additive = true } switch m.mtype { case "g", "ms", "h": v, err := strconv.ParseFloat(pipesplit[0], 64) if err != nil { log.Printf("Error: parsing value to float64: %s\n", line) return errors.New("Error Parsing statsd line") } m.floatvalue = v case "c", "s": var v int64 v, err := strconv.ParseInt(pipesplit[0], 10, 64) if err != nil { v2, err2 := strconv.ParseFloat(pipesplit[0], 64) if err2 != nil { log.Printf("Error: parsing value to int64: %s\n", line) return errors.New("Error Parsing statsd line") } v = int64(v2) } // If a sample rate is given with a counter, divide value by the rate if m.samplerate != 0 && m.mtype == "c" { v = int64(float64(v) / m.samplerate) } m.intvalue = v } // Parse the name & tags from bucket m.name, m.field, m.tags = s.parseName(m.bucket) switch m.mtype { case "c": m.tags["metric_type"] = "counter" case "g": m.tags["metric_type"] = "gauge" case "s": m.tags["metric_type"] = "set" case "ms": m.tags["metric_type"] = "timing" case "h": m.tags["metric_type"] = "histogram" } if len(lineTags) > 0 { for k, v := range lineTags { m.tags[k] = v } } // Make a unique key for the measurement name/tags var tg []string for k, v := range m.tags { tg = append(tg, fmt.Sprintf("%s=%s", k, v)) } sort.Strings(tg) m.hash = fmt.Sprintf("%s%s", strings.Join(tg, ""), m.name) s.aggregate(m) } return nil } // parseName parses the given bucket name with the list of bucket maps in the // config file. If there is a match, it will parse the name of the metric and // map of tags. // Return values are (, , ) func (s *Statsd) parseName(bucket string) (string, string, map[string]string) { tags := make(map[string]string) bucketparts := strings.Split(bucket, ",") // Parse out any tags in the bucket if len(bucketparts) > 1 { for _, btag := range bucketparts[1:] { k, v := parseKeyValue(btag) if k != "" { tags[k] = v } } } var field string name := bucketparts[0] p, err := graphite.NewGraphiteParser(".", s.Templates, nil) if err == nil { p.DefaultTags = tags name, tags, field, _ = p.ApplyTemplate(name) } if s.ConvertNames { name = strings.Replace(name, ".", "_", -1) name = strings.Replace(name, "-", "__", -1) } if field == "" { field = defaultFieldName } return name, field, tags } // Parse the key,value out of a string that looks like "key=value" func parseKeyValue(keyvalue string) (string, string) { var key, val string split := strings.Split(keyvalue, "=") // Must be exactly 2 to get anything meaningful out of them if len(split) == 2 { key = split[0] val = split[1] } else if len(split) == 1 { val = split[0] } return key, val } // aggregate takes in a metric. It then // aggregates and caches the current value(s). It does not deal with the // Delete* options, because those are dealt with in the Gather function. func (s *Statsd) aggregate(m metric) { switch m.mtype { case "ms", "h": // Check if the measurement exists cached, ok := s.timings[m.hash] if !ok { cached = cachedtimings{ name: m.name, fields: make(map[string]RunningStats), tags: m.tags, } } // Check if the field exists. If we've not enabled multiple fields per timer // this will be the default field name, eg. "value" field, ok := cached.fields[m.field] if !ok { field = RunningStats{ PercLimit: s.PercentileLimit, } } if m.samplerate > 0 { for i := 0; i < int(1.0/m.samplerate); i++ { field.AddValue(m.floatvalue) } } else { field.AddValue(m.floatvalue) } cached.fields[m.field] = field s.timings[m.hash] = cached case "c": // check if the measurement exists _, ok := s.counters[m.hash] if !ok { s.counters[m.hash] = cachedcounter{ name: m.name, fields: make(map[string]interface{}), tags: m.tags, } } // check if the field exists _, ok = s.counters[m.hash].fields[m.field] if !ok { s.counters[m.hash].fields[m.field] = int64(0) } s.counters[m.hash].fields[m.field] = s.counters[m.hash].fields[m.field].(int64) + m.intvalue case "g": // check if the measurement exists _, ok := s.gauges[m.hash] if !ok { s.gauges[m.hash] = cachedgauge{ name: m.name, fields: make(map[string]interface{}), tags: m.tags, } } // check if the field exists _, ok = s.gauges[m.hash].fields[m.field] if !ok { s.gauges[m.hash].fields[m.field] = float64(0) } if m.additive { s.gauges[m.hash].fields[m.field] = s.gauges[m.hash].fields[m.field].(float64) + m.floatvalue } else { s.gauges[m.hash].fields[m.field] = m.floatvalue } case "s": // check if the measurement exists _, ok := s.sets[m.hash] if !ok { s.sets[m.hash] = cachedset{ name: m.name, fields: make(map[string]map[int64]bool), tags: m.tags, } } // check if the field exists _, ok = s.sets[m.hash].fields[m.field] if !ok { s.sets[m.hash].fields[m.field] = make(map[int64]bool) } s.sets[m.hash].fields[m.field][m.intvalue] = true } } func (s *Statsd) Stop() { s.Lock() defer s.Unlock() log.Println("Stopping the statsd service") close(s.done) s.listener.Close() s.wg.Wait() close(s.in) } func init() { inputs.Add("statsd", func() telegraf.Input { return &Statsd{ ConvertNames: true, UDPPacketSize: UDP_PACKET_SIZE, } }) }