telegraf/config/config.go

2235 lines
59 KiB
Go

package config
import (
"bytes"
"errors"
"fmt"
"io/ioutil"
"log"
"math"
"net/http"
"net/url"
"os"
"path/filepath"
"regexp"
"runtime"
"sort"
"strconv"
"strings"
"time"
"github.com/influxdata/telegraf"
"github.com/influxdata/telegraf/internal"
"github.com/influxdata/telegraf/models"
"github.com/influxdata/telegraf/plugins/aggregators"
"github.com/influxdata/telegraf/plugins/inputs"
"github.com/influxdata/telegraf/plugins/outputs"
"github.com/influxdata/telegraf/plugins/parsers"
"github.com/influxdata/telegraf/plugins/processors"
"github.com/influxdata/telegraf/plugins/serializers"
"github.com/influxdata/toml"
"github.com/influxdata/toml/ast"
)
var (
// Default sections
sectionDefaults = []string{"global_tags", "agent", "outputs",
"processors", "aggregators", "inputs"}
// Default input plugins
inputDefaults = []string{"cpu", "mem", "swap", "system", "kernel",
"processes", "disk", "diskio"}
// Default output plugins
outputDefaults = []string{"influxdb"}
// envVarRe is a regex to find environment variables in the config file
envVarRe = regexp.MustCompile(`\$\{(\w+)\}|\$(\w+)`)
envVarEscaper = strings.NewReplacer(
`"`, `\"`,
`\`, `\\`,
)
)
// Config specifies the URL/user/password for the database that telegraf
// will be logging to, as well as all the plugins that the user has
// specified
type Config struct {
Tags map[string]string
InputFilters []string
OutputFilters []string
Agent *AgentConfig
Inputs []*models.RunningInput
Outputs []*models.RunningOutput
Aggregators []*models.RunningAggregator
// Processors have a slice wrapper type because they need to be sorted
Processors models.RunningProcessors
AggProcessors models.RunningProcessors
}
func NewConfig() *Config {
c := &Config{
// Agent defaults:
Agent: &AgentConfig{
Interval: internal.Duration{Duration: 10 * time.Second},
RoundInterval: true,
FlushInterval: internal.Duration{Duration: 10 * time.Second},
LogTarget: "file",
LogfileRotationMaxArchives: 5,
},
Tags: make(map[string]string),
Inputs: make([]*models.RunningInput, 0),
Outputs: make([]*models.RunningOutput, 0),
Processors: make([]*models.RunningProcessor, 0),
AggProcessors: make([]*models.RunningProcessor, 0),
InputFilters: make([]string, 0),
OutputFilters: make([]string, 0),
}
return c
}
type AgentConfig struct {
// Interval at which to gather information
Interval internal.Duration
// RoundInterval rounds collection interval to 'interval'.
// ie, if Interval=10s then always collect on :00, :10, :20, etc.
RoundInterval bool
// By default or when set to "0s", precision will be set to the same
// timestamp order as the collection interval, with the maximum being 1s.
// ie, when interval = "10s", precision will be "1s"
// when interval = "250ms", precision will be "1ms"
// Precision will NOT be used for service inputs. It is up to each individual
// service input to set the timestamp at the appropriate precision.
Precision internal.Duration
// CollectionJitter is used to jitter the collection by a random amount.
// Each plugin will sleep for a random time within jitter before collecting.
// This can be used to avoid many plugins querying things like sysfs at the
// same time, which can have a measurable effect on the system.
CollectionJitter internal.Duration
// FlushInterval is the Interval at which to flush data
FlushInterval internal.Duration
// FlushJitter Jitters the flush interval by a random amount.
// This is primarily to avoid large write spikes for users running a large
// number of telegraf instances.
// ie, a jitter of 5s and interval 10s means flushes will happen every 10-15s
FlushJitter internal.Duration
// MetricBatchSize is the maximum number of metrics that is wrote to an
// output plugin in one call.
MetricBatchSize int
// MetricBufferLimit is the max number of metrics that each output plugin
// will cache. The buffer is cleared when a successful write occurs. When
// full, the oldest metrics will be overwritten. This number should be a
// multiple of MetricBatchSize. Due to current implementation, this could
// not be less than 2 times MetricBatchSize.
MetricBufferLimit int
// FlushBufferWhenFull tells Telegraf to flush the metric buffer whenever
// it fills up, regardless of FlushInterval. Setting this option to true
// does _not_ deactivate FlushInterval.
FlushBufferWhenFull bool
// TODO(cam): Remove UTC and parameter, they are no longer
// valid for the agent config. Leaving them here for now for backwards-
// compatibility
UTC bool `toml:"utc"`
// Debug is the option for running in debug mode
Debug bool `toml:"debug"`
// Quiet is the option for running in quiet mode
Quiet bool `toml:"quiet"`
// Log target controls the destination for logs and can be one of "file",
// "stderr" or, on Windows, "eventlog". When set to "file", the output file
// is determined by the "logfile" setting.
LogTarget string `toml:"logtarget"`
// Name of the file to be logged to when using the "file" logtarget. If set to
// the empty string then logs are written to stderr.
Logfile string `toml:"logfile"`
// The file will be rotated after the time interval specified. When set
// to 0 no time based rotation is performed.
LogfileRotationInterval internal.Duration `toml:"logfile_rotation_interval"`
// The logfile will be rotated when it becomes larger than the specified
// size. When set to 0 no size based rotation is performed.
LogfileRotationMaxSize internal.Size `toml:"logfile_rotation_max_size"`
// Maximum number of rotated archives to keep, any older logs are deleted.
// If set to -1, no archives are removed.
LogfileRotationMaxArchives int `toml:"logfile_rotation_max_archives"`
Hostname string
OmitHostname bool
}
// Inputs returns a list of strings of the configured inputs.
func (c *Config) InputNames() []string {
var name []string
for _, input := range c.Inputs {
name = append(name, input.Config.Name)
}
return name
}
// Outputs returns a list of strings of the configured aggregators.
func (c *Config) AggregatorNames() []string {
var name []string
for _, aggregator := range c.Aggregators {
name = append(name, aggregator.Config.Name)
}
return name
}
// Outputs returns a list of strings of the configured processors.
func (c *Config) ProcessorNames() []string {
var name []string
for _, processor := range c.Processors {
name = append(name, processor.Config.Name)
}
return name
}
// Outputs returns a list of strings of the configured outputs.
func (c *Config) OutputNames() []string {
var name []string
for _, output := range c.Outputs {
name = append(name, output.Config.Name)
}
return name
}
// ListTags returns a string of tags specified in the config,
// line-protocol style
func (c *Config) ListTags() string {
var tags []string
for k, v := range c.Tags {
tags = append(tags, fmt.Sprintf("%s=%s", k, v))
}
sort.Strings(tags)
return strings.Join(tags, " ")
}
var header = `# Telegraf Configuration
#
# Telegraf is entirely plugin driven. All metrics are gathered from the
# declared inputs, and sent to the declared outputs.
#
# Plugins must be declared in here to be active.
# To deactivate a plugin, comment out the name and any variables.
#
# Use 'telegraf -config telegraf.conf -test' to see what metrics a config
# file would generate.
#
# Environment variables can be used anywhere in this config file, simply surround
# them with ${}. For strings the variable must be within quotes (ie, "${STR_VAR}"),
# for numbers and booleans they should be plain (ie, ${INT_VAR}, ${BOOL_VAR})
`
var globalTagsConfig = `
# Global tags can be specified here in key="value" format.
[global_tags]
# dc = "us-east-1" # will tag all metrics with dc=us-east-1
# rack = "1a"
## Environment variables can be used as tags, and throughout the config file
# user = "$USER"
`
var agentConfig = `
# Configuration for telegraf agent
[agent]
## Default data collection interval for all inputs
interval = "10s"
## Rounds collection interval to 'interval'
## ie, if interval="10s" then always collect on :00, :10, :20, etc.
round_interval = true
## Telegraf will send metrics to outputs in batches of at most
## metric_batch_size metrics.
## This controls the size of writes that Telegraf sends to output plugins.
metric_batch_size = 1000
## Maximum number of unwritten metrics per output. Increasing this value
## allows for longer periods of output downtime without dropping metrics at the
## cost of higher maximum memory usage.
metric_buffer_limit = 10000
## Collection jitter is used to jitter the collection by a random amount.
## Each plugin will sleep for a random time within jitter before collecting.
## This can be used to avoid many plugins querying things like sysfs at the
## same time, which can have a measurable effect on the system.
collection_jitter = "0s"
## Default flushing interval for all outputs. Maximum flush_interval will be
## flush_interval + flush_jitter
flush_interval = "10s"
## Jitter the flush interval by a random amount. This is primarily to avoid
## large write spikes for users running a large number of telegraf instances.
## ie, a jitter of 5s and interval 10s means flushes will happen every 10-15s
flush_jitter = "0s"
## By default or when set to "0s", precision will be set to the same
## timestamp order as the collection interval, with the maximum being 1s.
## ie, when interval = "10s", precision will be "1s"
## when interval = "250ms", precision will be "1ms"
## Precision will NOT be used for service inputs. It is up to each individual
## service input to set the timestamp at the appropriate precision.
## Valid time units are "ns", "us" (or "µs"), "ms", "s".
precision = ""
## Log at debug level.
# debug = false
## Log only error level messages.
# quiet = false
## Log target controls the destination for logs and can be one of "file",
## "stderr" or, on Windows, "eventlog". When set to "file", the output file
## is determined by the "logfile" setting.
# logtarget = "file"
## Name of the file to be logged to when using the "file" logtarget. If set to
## the empty string then logs are written to stderr.
# logfile = ""
## The logfile will be rotated after the time interval specified. When set
## to 0 no time based rotation is performed. Logs are rotated only when
## written to, if there is no log activity rotation may be delayed.
# logfile_rotation_interval = "0d"
## The logfile will be rotated when it becomes larger than the specified
## size. When set to 0 no size based rotation is performed.
# logfile_rotation_max_size = "0MB"
## Maximum number of rotated archives to keep, any older logs are deleted.
## If set to -1, no archives are removed.
# logfile_rotation_max_archives = 5
## Override default hostname, if empty use os.Hostname()
hostname = ""
## If set to true, do no set the "host" tag in the telegraf agent.
omit_hostname = false
`
var outputHeader = `
###############################################################################
# OUTPUT PLUGINS #
###############################################################################
`
var processorHeader = `
###############################################################################
# PROCESSOR PLUGINS #
###############################################################################
`
var aggregatorHeader = `
###############################################################################
# AGGREGATOR PLUGINS #
###############################################################################
`
var inputHeader = `
###############################################################################
# INPUT PLUGINS #
###############################################################################
`
var serviceInputHeader = `
###############################################################################
# SERVICE INPUT PLUGINS #
###############################################################################
`
// PrintSampleConfig prints the sample config
func PrintSampleConfig(
sectionFilters []string,
inputFilters []string,
outputFilters []string,
aggregatorFilters []string,
processorFilters []string,
) {
// print headers
fmt.Printf(header)
if len(sectionFilters) == 0 {
sectionFilters = sectionDefaults
}
printFilteredGlobalSections(sectionFilters)
// print output plugins
if sliceContains("outputs", sectionFilters) {
if len(outputFilters) != 0 {
if len(outputFilters) >= 3 && outputFilters[1] != "none" {
fmt.Printf(outputHeader)
}
printFilteredOutputs(outputFilters, false)
} else {
fmt.Printf(outputHeader)
printFilteredOutputs(outputDefaults, false)
// Print non-default outputs, commented
var pnames []string
for pname := range outputs.Outputs {
if !sliceContains(pname, outputDefaults) {
pnames = append(pnames, pname)
}
}
sort.Strings(pnames)
printFilteredOutputs(pnames, true)
}
}
// print processor plugins
if sliceContains("processors", sectionFilters) {
if len(processorFilters) != 0 {
if len(processorFilters) >= 3 && processorFilters[1] != "none" {
fmt.Printf(processorHeader)
}
printFilteredProcessors(processorFilters, false)
} else {
fmt.Printf(processorHeader)
pnames := []string{}
for pname := range processors.Processors {
pnames = append(pnames, pname)
}
sort.Strings(pnames)
printFilteredProcessors(pnames, true)
}
}
// print aggregator plugins
if sliceContains("aggregators", sectionFilters) {
if len(aggregatorFilters) != 0 {
if len(aggregatorFilters) >= 3 && aggregatorFilters[1] != "none" {
fmt.Printf(aggregatorHeader)
}
printFilteredAggregators(aggregatorFilters, false)
} else {
fmt.Printf(aggregatorHeader)
pnames := []string{}
for pname := range aggregators.Aggregators {
pnames = append(pnames, pname)
}
sort.Strings(pnames)
printFilteredAggregators(pnames, true)
}
}
// print input plugins
if sliceContains("inputs", sectionFilters) {
if len(inputFilters) != 0 {
if len(inputFilters) >= 3 && inputFilters[1] != "none" {
fmt.Printf(inputHeader)
}
printFilteredInputs(inputFilters, false)
} else {
fmt.Printf(inputHeader)
printFilteredInputs(inputDefaults, false)
// Print non-default inputs, commented
var pnames []string
for pname := range inputs.Inputs {
if !sliceContains(pname, inputDefaults) {
pnames = append(pnames, pname)
}
}
sort.Strings(pnames)
printFilteredInputs(pnames, true)
}
}
}
func printFilteredProcessors(processorFilters []string, commented bool) {
// Filter processors
var pnames []string
for pname := range processors.Processors {
if sliceContains(pname, processorFilters) {
pnames = append(pnames, pname)
}
}
sort.Strings(pnames)
// Print Outputs
for _, pname := range pnames {
creator := processors.Processors[pname]
output := creator()
printConfig(pname, output, "processors", commented)
}
}
func printFilteredAggregators(aggregatorFilters []string, commented bool) {
// Filter outputs
var anames []string
for aname := range aggregators.Aggregators {
if sliceContains(aname, aggregatorFilters) {
anames = append(anames, aname)
}
}
sort.Strings(anames)
// Print Outputs
for _, aname := range anames {
creator := aggregators.Aggregators[aname]
output := creator()
printConfig(aname, output, "aggregators", commented)
}
}
func printFilteredInputs(inputFilters []string, commented bool) {
// Filter inputs
var pnames []string
for pname := range inputs.Inputs {
if sliceContains(pname, inputFilters) {
pnames = append(pnames, pname)
}
}
sort.Strings(pnames)
// cache service inputs to print them at the end
servInputs := make(map[string]telegraf.ServiceInput)
// for alphabetical looping:
servInputNames := []string{}
// Print Inputs
for _, pname := range pnames {
creator := inputs.Inputs[pname]
input := creator()
switch p := input.(type) {
case telegraf.ServiceInput:
servInputs[pname] = p
servInputNames = append(servInputNames, pname)
continue
}
printConfig(pname, input, "inputs", commented)
}
// Print Service Inputs
if len(servInputs) == 0 {
return
}
sort.Strings(servInputNames)
fmt.Printf(serviceInputHeader)
for _, name := range servInputNames {
printConfig(name, servInputs[name], "inputs", commented)
}
}
func printFilteredOutputs(outputFilters []string, commented bool) {
// Filter outputs
var onames []string
for oname := range outputs.Outputs {
if sliceContains(oname, outputFilters) {
onames = append(onames, oname)
}
}
sort.Strings(onames)
// Print Outputs
for _, oname := range onames {
creator := outputs.Outputs[oname]
output := creator()
printConfig(oname, output, "outputs", commented)
}
}
func printFilteredGlobalSections(sectionFilters []string) {
if sliceContains("global_tags", sectionFilters) {
fmt.Printf(globalTagsConfig)
}
if sliceContains("agent", sectionFilters) {
fmt.Printf(agentConfig)
}
}
func printConfig(name string, p telegraf.PluginDescriber, op string, commented bool) {
comment := ""
if commented {
comment = "# "
}
fmt.Printf("\n%s# %s\n%s[[%s.%s]]", comment, p.Description(), comment,
op, name)
config := p.SampleConfig()
if config == "" {
fmt.Printf("\n%s # no configuration\n\n", comment)
} else {
lines := strings.Split(config, "\n")
for i, line := range lines {
if i == 0 || i == len(lines)-1 {
fmt.Print("\n")
continue
}
fmt.Print(strings.TrimRight(comment+line, " ") + "\n")
}
}
}
func sliceContains(name string, list []string) bool {
for _, b := range list {
if b == name {
return true
}
}
return false
}
// PrintInputConfig prints the config usage of a single input.
func PrintInputConfig(name string) error {
if creator, ok := inputs.Inputs[name]; ok {
printConfig(name, creator(), "inputs", false)
} else {
return errors.New(fmt.Sprintf("Input %s not found", name))
}
return nil
}
// PrintOutputConfig prints the config usage of a single output.
func PrintOutputConfig(name string) error {
if creator, ok := outputs.Outputs[name]; ok {
printConfig(name, creator(), "outputs", false)
} else {
return errors.New(fmt.Sprintf("Output %s not found", name))
}
return nil
}
func (c *Config) LoadDirectory(path string) error {
walkfn := func(thispath string, info os.FileInfo, _ error) error {
if info == nil {
log.Printf("W! Telegraf is not permitted to read %s", thispath)
return nil
}
if info.IsDir() {
if strings.HasPrefix(info.Name(), "..") {
// skip Kubernetes mounts, prevening loading the same config twice
return filepath.SkipDir
}
return nil
}
name := info.Name()
if len(name) < 6 || name[len(name)-5:] != ".conf" {
return nil
}
err := c.LoadConfig(thispath)
if err != nil {
return err
}
return nil
}
return filepath.Walk(path, walkfn)
}
// Try to find a default config file at these locations (in order):
// 1. $TELEGRAF_CONFIG_PATH
// 2. $HOME/.telegraf/telegraf.conf
// 3. /etc/telegraf/telegraf.conf
//
func getDefaultConfigPath() (string, error) {
envfile := os.Getenv("TELEGRAF_CONFIG_PATH")
homefile := os.ExpandEnv("${HOME}/.telegraf/telegraf.conf")
etcfile := "/etc/telegraf/telegraf.conf"
if runtime.GOOS == "windows" {
programFiles := os.Getenv("ProgramFiles")
if programFiles == "" { // Should never happen
programFiles = `C:\Program Files`
}
etcfile = programFiles + `\Telegraf\telegraf.conf`
}
for _, path := range []string{envfile, homefile, etcfile} {
if _, err := os.Stat(path); err == nil {
log.Printf("I! Using config file: %s", path)
return path, nil
}
}
// if we got here, we didn't find a file in a default location
return "", fmt.Errorf("No config file specified, and could not find one"+
" in $TELEGRAF_CONFIG_PATH, %s, or %s", homefile, etcfile)
}
// LoadConfig loads the given config file and applies it to c
func (c *Config) LoadConfig(path string) error {
var err error
if path == "" {
if path, err = getDefaultConfigPath(); err != nil {
return err
}
}
data, err := loadConfig(path)
if err != nil {
return fmt.Errorf("Error loading config file %s: %w", path, err)
}
if err = c.LoadConfigData(data); err != nil {
return fmt.Errorf("Error loading config file %s: %w", path, err)
}
return nil
}
// LoadConfigData loads TOML-formatted config data
func (c *Config) LoadConfigData(data []byte) error {
tbl, err := parseConfig(data)
if err != nil {
return fmt.Errorf("Error parsing data: %s", err)
}
// Parse tags tables first:
for _, tableName := range []string{"tags", "global_tags"} {
if val, ok := tbl.Fields[tableName]; ok {
subTable, ok := val.(*ast.Table)
if !ok {
return fmt.Errorf("invalid configuration, bad table name %q", tableName)
}
if err = toml.UnmarshalTable(subTable, c.Tags); err != nil {
return fmt.Errorf("error parsing table name %q: %w", tableName, err)
}
}
}
// Parse agent table:
if val, ok := tbl.Fields["agent"]; ok {
subTable, ok := val.(*ast.Table)
if !ok {
return fmt.Errorf("invalid configuration, error parsing agent table")
}
if err = toml.UnmarshalTable(subTable, c.Agent); err != nil {
return fmt.Errorf("error parsing agent table: %w", err)
}
}
if !c.Agent.OmitHostname {
if c.Agent.Hostname == "" {
hostname, err := os.Hostname()
if err != nil {
return err
}
c.Agent.Hostname = hostname
}
c.Tags["host"] = c.Agent.Hostname
}
// Parse all the rest of the plugins:
for name, val := range tbl.Fields {
subTable, ok := val.(*ast.Table)
if !ok {
return fmt.Errorf("invalid configuration, error parsing field %q as table", name)
}
switch name {
case "agent", "global_tags", "tags":
case "outputs":
for pluginName, pluginVal := range subTable.Fields {
switch pluginSubTable := pluginVal.(type) {
// legacy [outputs.influxdb] support
case *ast.Table:
if err = c.addOutput(pluginName, pluginSubTable); err != nil {
return fmt.Errorf("Error parsing %s, %s", pluginName, err)
}
case []*ast.Table:
for _, t := range pluginSubTable {
if err = c.addOutput(pluginName, t); err != nil {
return fmt.Errorf("Error parsing %s array, %s", pluginName, err)
}
}
default:
return fmt.Errorf("Unsupported config format: %s",
pluginName)
}
}
case "inputs", "plugins":
for pluginName, pluginVal := range subTable.Fields {
switch pluginSubTable := pluginVal.(type) {
// legacy [inputs.cpu] support
case *ast.Table:
if err = c.addInput(pluginName, pluginSubTable); err != nil {
return fmt.Errorf("Error parsing %s, %s", pluginName, err)
}
case []*ast.Table:
for _, t := range pluginSubTable {
if err = c.addInput(pluginName, t); err != nil {
return fmt.Errorf("Error parsing %s, %s", pluginName, err)
}
}
default:
return fmt.Errorf("Unsupported config format: %s",
pluginName)
}
}
case "processors":
for pluginName, pluginVal := range subTable.Fields {
switch pluginSubTable := pluginVal.(type) {
case []*ast.Table:
for _, t := range pluginSubTable {
if err = c.addProcessor(pluginName, t); err != nil {
return fmt.Errorf("Error parsing %s, %s", pluginName, err)
}
}
default:
return fmt.Errorf("Unsupported config format: %s",
pluginName)
}
}
case "aggregators":
for pluginName, pluginVal := range subTable.Fields {
switch pluginSubTable := pluginVal.(type) {
case []*ast.Table:
for _, t := range pluginSubTable {
if err = c.addAggregator(pluginName, t); err != nil {
return fmt.Errorf("Error parsing %s, %s", pluginName, err)
}
}
default:
return fmt.Errorf("Unsupported config format: %s",
pluginName)
}
}
// Assume it's an input input for legacy config file support if no other
// identifiers are present
default:
if err = c.addInput(name, subTable); err != nil {
return fmt.Errorf("Error parsing %s, %s", name, err)
}
}
}
if len(c.Processors) > 1 {
sort.Sort(c.Processors)
}
return nil
}
// trimBOM trims the Byte-Order-Marks from the beginning of the file.
// this is for Windows compatibility only.
// see https://github.com/influxdata/telegraf/issues/1378
func trimBOM(f []byte) []byte {
return bytes.TrimPrefix(f, []byte("\xef\xbb\xbf"))
}
// escapeEnv escapes a value for inserting into a TOML string.
func escapeEnv(value string) string {
return envVarEscaper.Replace(value)
}
func loadConfig(config string) ([]byte, error) {
u, err := url.Parse(config)
if err != nil {
return nil, err
}
switch u.Scheme {
case "https", "http":
return fetchConfig(u)
default:
// If it isn't a https scheme, try it as a file.
}
return ioutil.ReadFile(config)
}
func fetchConfig(u *url.URL) ([]byte, error) {
req, err := http.NewRequest("GET", u.String(), nil)
if err != nil {
return nil, err
}
if v, exists := os.LookupEnv("INFLUX_TOKEN"); exists {
req.Header.Add("Authorization", "Token "+v)
}
req.Header.Add("Accept", "application/toml")
resp, err := http.DefaultClient.Do(req)
if err != nil {
return nil, err
}
if resp.StatusCode != http.StatusOK {
return nil, fmt.Errorf("failed to retrieve remote config: %s", resp.Status)
}
defer resp.Body.Close()
return ioutil.ReadAll(resp.Body)
}
// parseConfig loads a TOML configuration from a provided path and
// returns the AST produced from the TOML parser. When loading the file, it
// will find environment variables and replace them.
func parseConfig(contents []byte) (*ast.Table, error) {
contents = trimBOM(contents)
parameters := envVarRe.FindAllSubmatch(contents, -1)
for _, parameter := range parameters {
if len(parameter) != 3 {
continue
}
var env_var []byte
if parameter[1] != nil {
env_var = parameter[1]
} else if parameter[2] != nil {
env_var = parameter[2]
} else {
continue
}
env_val, ok := os.LookupEnv(strings.TrimPrefix(string(env_var), "$"))
if ok {
env_val = escapeEnv(env_val)
contents = bytes.Replace(contents, parameter[0], []byte(env_val), 1)
}
}
return toml.Parse(contents)
}
func (c *Config) addAggregator(name string, table *ast.Table) error {
creator, ok := aggregators.Aggregators[name]
if !ok {
return fmt.Errorf("Undefined but requested aggregator: %s", name)
}
aggregator := creator()
conf, err := buildAggregator(name, table)
if err != nil {
return err
}
if err := toml.UnmarshalTable(table, aggregator); err != nil {
return err
}
c.Aggregators = append(c.Aggregators, models.NewRunningAggregator(aggregator, conf))
return nil
}
func (c *Config) addProcessor(name string, table *ast.Table) error {
creator, ok := processors.Processors[name]
if !ok {
return fmt.Errorf("Undefined but requested processor: %s", name)
}
processorConfig, err := buildProcessor(name, table)
if err != nil {
return err
}
rf, err := c.newRunningProcessor(creator, processorConfig, name, table)
if err != nil {
return err
}
c.Processors = append(c.Processors, rf)
// save a copy for the aggregator
rf, err = c.newRunningProcessor(creator, processorConfig, name, table)
if err != nil {
return err
}
c.AggProcessors = append(c.AggProcessors, rf)
return nil
}
func (c *Config) newRunningProcessor(
creator processors.StreamingCreator,
processorConfig *models.ProcessorConfig,
name string,
table *ast.Table,
) (*models.RunningProcessor, error) {
processor := creator()
if p, ok := processor.(unwrappable); ok {
if err := toml.UnmarshalTable(table, p.Unwrap()); err != nil {
return nil, err
}
} else {
if err := toml.UnmarshalTable(table, processor); err != nil {
return nil, err
}
}
rf := models.NewRunningProcessor(processor, processorConfig)
return rf, nil
}
func (c *Config) addOutput(name string, table *ast.Table) error {
if len(c.OutputFilters) > 0 && !sliceContains(name, c.OutputFilters) {
return nil
}
creator, ok := outputs.Outputs[name]
if !ok {
return fmt.Errorf("Undefined but requested output: %s", name)
}
output := creator()
// If the output has a SetSerializer function, then this means it can write
// arbitrary types of output, so build the serializer and set it.
switch t := output.(type) {
case serializers.SerializerOutput:
serializer, err := buildSerializer(name, table)
if err != nil {
return err
}
t.SetSerializer(serializer)
}
outputConfig, err := buildOutput(name, table)
if err != nil {
return err
}
if err := toml.UnmarshalTable(table, output); err != nil {
return err
}
ro := models.NewRunningOutput(name, output, outputConfig,
c.Agent.MetricBatchSize, c.Agent.MetricBufferLimit)
c.Outputs = append(c.Outputs, ro)
return nil
}
func (c *Config) addInput(name string, table *ast.Table) error {
if len(c.InputFilters) > 0 && !sliceContains(name, c.InputFilters) {
return nil
}
// Legacy support renaming io input to diskio
if name == "io" {
name = "diskio"
}
creator, ok := inputs.Inputs[name]
if !ok {
return fmt.Errorf("Undefined but requested input: %s", name)
}
input := creator()
// If the input has a SetParser function, then this means it can accept
// arbitrary types of input, so build the parser and set it.
switch t := input.(type) {
case parsers.ParserInput:
parser, err := buildParser(name, table)
if err != nil {
return err
}
t.SetParser(parser)
}
switch t := input.(type) {
case parsers.ParserFuncInput:
config, err := getParserConfig(name, table)
if err != nil {
return err
}
t.SetParserFunc(func() (parsers.Parser, error) {
return parsers.NewParser(config)
})
}
pluginConfig, err := buildInput(name, table)
if err != nil {
return err
}
if err := toml.UnmarshalTable(table, input); err != nil {
return err
}
rp := models.NewRunningInput(input, pluginConfig)
rp.SetDefaultTags(c.Tags)
c.Inputs = append(c.Inputs, rp)
return nil
}
// buildAggregator parses Aggregator specific items from the ast.Table,
// builds the filter and returns a
// models.AggregatorConfig to be inserted into models.RunningAggregator
func buildAggregator(name string, tbl *ast.Table) (*models.AggregatorConfig, error) {
conf := &models.AggregatorConfig{
Name: name,
Delay: time.Millisecond * 100,
Period: time.Second * 30,
Grace: time.Second * 0,
}
if node, ok := tbl.Fields["period"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if str, ok := kv.Value.(*ast.String); ok {
dur, err := time.ParseDuration(str.Value)
if err != nil {
return nil, err
}
conf.Period = dur
}
}
}
if node, ok := tbl.Fields["delay"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if str, ok := kv.Value.(*ast.String); ok {
dur, err := time.ParseDuration(str.Value)
if err != nil {
return nil, err
}
conf.Delay = dur
}
}
}
if node, ok := tbl.Fields["grace"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if str, ok := kv.Value.(*ast.String); ok {
dur, err := time.ParseDuration(str.Value)
if err != nil {
return nil, err
}
conf.Grace = dur
}
}
}
if node, ok := tbl.Fields["drop_original"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if b, ok := kv.Value.(*ast.Boolean); ok {
var err error
conf.DropOriginal, err = strconv.ParseBool(b.Value)
if err != nil {
log.Printf("Error parsing boolean value for %s: %s\n", name, err)
}
}
}
}
if node, ok := tbl.Fields["name_prefix"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if str, ok := kv.Value.(*ast.String); ok {
conf.MeasurementPrefix = str.Value
}
}
}
if node, ok := tbl.Fields["name_suffix"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if str, ok := kv.Value.(*ast.String); ok {
conf.MeasurementSuffix = str.Value
}
}
}
if node, ok := tbl.Fields["name_override"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if str, ok := kv.Value.(*ast.String); ok {
conf.NameOverride = str.Value
}
}
}
if node, ok := tbl.Fields["alias"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if str, ok := kv.Value.(*ast.String); ok {
conf.Alias = str.Value
}
}
}
conf.Tags = make(map[string]string)
if node, ok := tbl.Fields["tags"]; ok {
if subtbl, ok := node.(*ast.Table); ok {
if err := toml.UnmarshalTable(subtbl, conf.Tags); err != nil {
log.Printf("Could not parse tags for input %s\n", name)
}
}
}
delete(tbl.Fields, "period")
delete(tbl.Fields, "delay")
delete(tbl.Fields, "grace")
delete(tbl.Fields, "drop_original")
delete(tbl.Fields, "name_prefix")
delete(tbl.Fields, "name_suffix")
delete(tbl.Fields, "name_override")
delete(tbl.Fields, "alias")
delete(tbl.Fields, "tags")
var err error
conf.Filter, err = buildFilter(tbl)
if err != nil {
return conf, err
}
return conf, nil
}
// buildProcessor parses Processor specific items from the ast.Table,
// builds the filter and returns a
// models.ProcessorConfig to be inserted into models.RunningProcessor
func buildProcessor(name string, tbl *ast.Table) (*models.ProcessorConfig, error) {
conf := &models.ProcessorConfig{Name: name}
if node, ok := tbl.Fields["order"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if b, ok := kv.Value.(*ast.Integer); ok {
var err error
conf.Order, err = strconv.ParseInt(b.Value, 10, 64)
if err != nil {
log.Printf("Error parsing int value for %s: %s\n", name, err)
}
}
}
}
if node, ok := tbl.Fields["alias"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if str, ok := kv.Value.(*ast.String); ok {
conf.Alias = str.Value
}
}
}
delete(tbl.Fields, "alias")
delete(tbl.Fields, "order")
var err error
conf.Filter, err = buildFilter(tbl)
if err != nil {
return conf, err
}
return conf, nil
}
// buildFilter builds a Filter
// (tagpass/tagdrop/namepass/namedrop/fieldpass/fielddrop) to
// be inserted into the models.OutputConfig/models.InputConfig
// to be used for glob filtering on tags and measurements
func buildFilter(tbl *ast.Table) (models.Filter, error) {
f := models.Filter{}
if node, ok := tbl.Fields["namepass"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if ary, ok := kv.Value.(*ast.Array); ok {
for _, elem := range ary.Value {
if str, ok := elem.(*ast.String); ok {
f.NamePass = append(f.NamePass, str.Value)
}
}
}
}
}
if node, ok := tbl.Fields["namedrop"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if ary, ok := kv.Value.(*ast.Array); ok {
for _, elem := range ary.Value {
if str, ok := elem.(*ast.String); ok {
f.NameDrop = append(f.NameDrop, str.Value)
}
}
}
}
}
fields := []string{"pass", "fieldpass"}
for _, field := range fields {
if node, ok := tbl.Fields[field]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if ary, ok := kv.Value.(*ast.Array); ok {
for _, elem := range ary.Value {
if str, ok := elem.(*ast.String); ok {
f.FieldPass = append(f.FieldPass, str.Value)
}
}
}
}
}
}
fields = []string{"drop", "fielddrop"}
for _, field := range fields {
if node, ok := tbl.Fields[field]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if ary, ok := kv.Value.(*ast.Array); ok {
for _, elem := range ary.Value {
if str, ok := elem.(*ast.String); ok {
f.FieldDrop = append(f.FieldDrop, str.Value)
}
}
}
}
}
}
if node, ok := tbl.Fields["tagpass"]; ok {
if subtbl, ok := node.(*ast.Table); ok {
for name, val := range subtbl.Fields {
if kv, ok := val.(*ast.KeyValue); ok {
tagfilter := &models.TagFilter{Name: name}
if ary, ok := kv.Value.(*ast.Array); ok {
for _, elem := range ary.Value {
if str, ok := elem.(*ast.String); ok {
tagfilter.Filter = append(tagfilter.Filter, str.Value)
}
}
}
f.TagPass = append(f.TagPass, *tagfilter)
}
}
}
}
if node, ok := tbl.Fields["tagdrop"]; ok {
if subtbl, ok := node.(*ast.Table); ok {
for name, val := range subtbl.Fields {
if kv, ok := val.(*ast.KeyValue); ok {
tagfilter := &models.TagFilter{Name: name}
if ary, ok := kv.Value.(*ast.Array); ok {
for _, elem := range ary.Value {
if str, ok := elem.(*ast.String); ok {
tagfilter.Filter = append(tagfilter.Filter, str.Value)
}
}
}
f.TagDrop = append(f.TagDrop, *tagfilter)
}
}
}
}
if node, ok := tbl.Fields["tagexclude"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if ary, ok := kv.Value.(*ast.Array); ok {
for _, elem := range ary.Value {
if str, ok := elem.(*ast.String); ok {
f.TagExclude = append(f.TagExclude, str.Value)
}
}
}
}
}
if node, ok := tbl.Fields["taginclude"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if ary, ok := kv.Value.(*ast.Array); ok {
for _, elem := range ary.Value {
if str, ok := elem.(*ast.String); ok {
f.TagInclude = append(f.TagInclude, str.Value)
}
}
}
}
}
if err := f.Compile(); err != nil {
return f, err
}
delete(tbl.Fields, "namedrop")
delete(tbl.Fields, "namepass")
delete(tbl.Fields, "fielddrop")
delete(tbl.Fields, "fieldpass")
delete(tbl.Fields, "drop")
delete(tbl.Fields, "pass")
delete(tbl.Fields, "tagdrop")
delete(tbl.Fields, "tagpass")
delete(tbl.Fields, "tagexclude")
delete(tbl.Fields, "taginclude")
return f, nil
}
// buildInput parses input specific items from the ast.Table,
// builds the filter and returns a
// models.InputConfig to be inserted into models.RunningInput
func buildInput(name string, tbl *ast.Table) (*models.InputConfig, error) {
cp := &models.InputConfig{Name: name}
if node, ok := tbl.Fields["interval"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if str, ok := kv.Value.(*ast.String); ok {
dur, err := time.ParseDuration(str.Value)
if err != nil {
return nil, err
}
cp.Interval = dur
}
}
}
if node, ok := tbl.Fields["name_prefix"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if str, ok := kv.Value.(*ast.String); ok {
cp.MeasurementPrefix = str.Value
}
}
}
if node, ok := tbl.Fields["name_suffix"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if str, ok := kv.Value.(*ast.String); ok {
cp.MeasurementSuffix = str.Value
}
}
}
if node, ok := tbl.Fields["name_override"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if str, ok := kv.Value.(*ast.String); ok {
cp.NameOverride = str.Value
}
}
}
if node, ok := tbl.Fields["alias"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if str, ok := kv.Value.(*ast.String); ok {
cp.Alias = str.Value
}
}
}
cp.Tags = make(map[string]string)
if node, ok := tbl.Fields["tags"]; ok {
if subtbl, ok := node.(*ast.Table); ok {
if err := toml.UnmarshalTable(subtbl, cp.Tags); err != nil {
log.Printf("E! Could not parse tags for input %s\n", name)
}
}
}
delete(tbl.Fields, "name_prefix")
delete(tbl.Fields, "name_suffix")
delete(tbl.Fields, "name_override")
delete(tbl.Fields, "alias")
delete(tbl.Fields, "interval")
delete(tbl.Fields, "tags")
var err error
cp.Filter, err = buildFilter(tbl)
if err != nil {
return cp, err
}
return cp, nil
}
// buildParser grabs the necessary entries from the ast.Table for creating
// a parsers.Parser object, and creates it, which can then be added onto
// an Input object.
func buildParser(name string, tbl *ast.Table) (parsers.Parser, error) {
config, err := getParserConfig(name, tbl)
if err != nil {
return nil, err
}
return parsers.NewParser(config)
}
func getParserConfig(name string, tbl *ast.Table) (*parsers.Config, error) {
c := &parsers.Config{
JSONStrict: true,
}
if node, ok := tbl.Fields["data_format"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if str, ok := kv.Value.(*ast.String); ok {
c.DataFormat = str.Value
}
}
}
// Legacy support, exec plugin originally parsed JSON by default.
if name == "exec" && c.DataFormat == "" {
c.DataFormat = "json"
} else if c.DataFormat == "" {
c.DataFormat = "influx"
}
if node, ok := tbl.Fields["separator"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if str, ok := kv.Value.(*ast.String); ok {
c.Separator = str.Value
}
}
}
if node, ok := tbl.Fields["templates"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if ary, ok := kv.Value.(*ast.Array); ok {
for _, elem := range ary.Value {
if str, ok := elem.(*ast.String); ok {
c.Templates = append(c.Templates, str.Value)
}
}
}
}
}
if node, ok := tbl.Fields["tag_keys"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if ary, ok := kv.Value.(*ast.Array); ok {
for _, elem := range ary.Value {
if str, ok := elem.(*ast.String); ok {
c.TagKeys = append(c.TagKeys, str.Value)
}
}
}
}
}
if node, ok := tbl.Fields["json_string_fields"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if ary, ok := kv.Value.(*ast.Array); ok {
for _, elem := range ary.Value {
if str, ok := elem.(*ast.String); ok {
c.JSONStringFields = append(c.JSONStringFields, str.Value)
}
}
}
}
}
if node, ok := tbl.Fields["json_name_key"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if str, ok := kv.Value.(*ast.String); ok {
c.JSONNameKey = str.Value
}
}
}
if node, ok := tbl.Fields["json_query"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if str, ok := kv.Value.(*ast.String); ok {
c.JSONQuery = str.Value
}
}
}
if node, ok := tbl.Fields["json_time_key"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if str, ok := kv.Value.(*ast.String); ok {
c.JSONTimeKey = str.Value
}
}
}
if node, ok := tbl.Fields["json_time_format"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if str, ok := kv.Value.(*ast.String); ok {
c.JSONTimeFormat = str.Value
}
}
}
if node, ok := tbl.Fields["json_timezone"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if str, ok := kv.Value.(*ast.String); ok {
c.JSONTimezone = str.Value
}
}
}
if node, ok := tbl.Fields["json_strict"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if b, ok := kv.Value.(*ast.Boolean); ok {
var err error
c.JSONStrict, err = b.Boolean()
if err != nil {
return nil, err
}
}
}
}
if node, ok := tbl.Fields["data_type"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if str, ok := kv.Value.(*ast.String); ok {
c.DataType = str.Value
}
}
}
if node, ok := tbl.Fields["collectd_auth_file"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if str, ok := kv.Value.(*ast.String); ok {
c.CollectdAuthFile = str.Value
}
}
}
if node, ok := tbl.Fields["collectd_security_level"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if str, ok := kv.Value.(*ast.String); ok {
c.CollectdSecurityLevel = str.Value
}
}
}
if node, ok := tbl.Fields["collectd_parse_multivalue"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if str, ok := kv.Value.(*ast.String); ok {
c.CollectdSplit = str.Value
}
}
}
if node, ok := tbl.Fields["collectd_typesdb"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if ary, ok := kv.Value.(*ast.Array); ok {
for _, elem := range ary.Value {
if str, ok := elem.(*ast.String); ok {
c.CollectdTypesDB = append(c.CollectdTypesDB, str.Value)
}
}
}
}
}
if node, ok := tbl.Fields["dropwizard_metric_registry_path"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if str, ok := kv.Value.(*ast.String); ok {
c.DropwizardMetricRegistryPath = str.Value
}
}
}
if node, ok := tbl.Fields["dropwizard_time_path"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if str, ok := kv.Value.(*ast.String); ok {
c.DropwizardTimePath = str.Value
}
}
}
if node, ok := tbl.Fields["dropwizard_time_format"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if str, ok := kv.Value.(*ast.String); ok {
c.DropwizardTimeFormat = str.Value
}
}
}
if node, ok := tbl.Fields["dropwizard_tags_path"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if str, ok := kv.Value.(*ast.String); ok {
c.DropwizardTagsPath = str.Value
}
}
}
c.DropwizardTagPathsMap = make(map[string]string)
if node, ok := tbl.Fields["dropwizard_tag_paths"]; ok {
if subtbl, ok := node.(*ast.Table); ok {
for name, val := range subtbl.Fields {
if kv, ok := val.(*ast.KeyValue); ok {
if str, ok := kv.Value.(*ast.String); ok {
c.DropwizardTagPathsMap[name] = str.Value
}
}
}
}
}
//for grok data_format
if node, ok := tbl.Fields["grok_named_patterns"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if ary, ok := kv.Value.(*ast.Array); ok {
for _, elem := range ary.Value {
if str, ok := elem.(*ast.String); ok {
c.GrokNamedPatterns = append(c.GrokNamedPatterns, str.Value)
}
}
}
}
}
if node, ok := tbl.Fields["grok_patterns"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if ary, ok := kv.Value.(*ast.Array); ok {
for _, elem := range ary.Value {
if str, ok := elem.(*ast.String); ok {
c.GrokPatterns = append(c.GrokPatterns, str.Value)
}
}
}
}
}
if node, ok := tbl.Fields["grok_custom_patterns"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if str, ok := kv.Value.(*ast.String); ok {
c.GrokCustomPatterns = str.Value
}
}
}
if node, ok := tbl.Fields["grok_custom_pattern_files"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if ary, ok := kv.Value.(*ast.Array); ok {
for _, elem := range ary.Value {
if str, ok := elem.(*ast.String); ok {
c.GrokCustomPatternFiles = append(c.GrokCustomPatternFiles, str.Value)
}
}
}
}
}
if node, ok := tbl.Fields["grok_timezone"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if str, ok := kv.Value.(*ast.String); ok {
c.GrokTimezone = str.Value
}
}
}
if node, ok := tbl.Fields["grok_unique_timestamp"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if str, ok := kv.Value.(*ast.String); ok {
c.GrokUniqueTimestamp = str.Value
}
}
}
//for csv parser
if node, ok := tbl.Fields["csv_column_names"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if ary, ok := kv.Value.(*ast.Array); ok {
for _, elem := range ary.Value {
if str, ok := elem.(*ast.String); ok {
c.CSVColumnNames = append(c.CSVColumnNames, str.Value)
}
}
}
}
}
if node, ok := tbl.Fields["csv_column_types"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if ary, ok := kv.Value.(*ast.Array); ok {
for _, elem := range ary.Value {
if str, ok := elem.(*ast.String); ok {
c.CSVColumnTypes = append(c.CSVColumnTypes, str.Value)
}
}
}
}
}
if node, ok := tbl.Fields["csv_tag_columns"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if ary, ok := kv.Value.(*ast.Array); ok {
for _, elem := range ary.Value {
if str, ok := elem.(*ast.String); ok {
c.CSVTagColumns = append(c.CSVTagColumns, str.Value)
}
}
}
}
}
if node, ok := tbl.Fields["csv_delimiter"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if str, ok := kv.Value.(*ast.String); ok {
c.CSVDelimiter = str.Value
}
}
}
if node, ok := tbl.Fields["csv_comment"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if str, ok := kv.Value.(*ast.String); ok {
c.CSVComment = str.Value
}
}
}
if node, ok := tbl.Fields["csv_measurement_column"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if str, ok := kv.Value.(*ast.String); ok {
c.CSVMeasurementColumn = str.Value
}
}
}
if node, ok := tbl.Fields["csv_timestamp_column"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if str, ok := kv.Value.(*ast.String); ok {
c.CSVTimestampColumn = str.Value
}
}
}
if node, ok := tbl.Fields["csv_timestamp_format"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if str, ok := kv.Value.(*ast.String); ok {
c.CSVTimestampFormat = str.Value
}
}
}
if node, ok := tbl.Fields["csv_header_row_count"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if integer, ok := kv.Value.(*ast.Integer); ok {
v, err := integer.Int()
if err != nil {
return nil, err
}
c.CSVHeaderRowCount = int(v)
}
}
}
if node, ok := tbl.Fields["csv_skip_rows"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if integer, ok := kv.Value.(*ast.Integer); ok {
v, err := integer.Int()
if err != nil {
return nil, err
}
c.CSVSkipRows = int(v)
}
}
}
if node, ok := tbl.Fields["csv_skip_columns"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if integer, ok := kv.Value.(*ast.Integer); ok {
v, err := integer.Int()
if err != nil {
return nil, err
}
c.CSVSkipColumns = int(v)
}
}
}
if node, ok := tbl.Fields["csv_trim_space"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if str, ok := kv.Value.(*ast.Boolean); ok {
//for config with no quotes
val, err := strconv.ParseBool(str.Value)
c.CSVTrimSpace = val
if err != nil {
return nil, fmt.Errorf("E! parsing to bool: %v", err)
}
}
}
}
if node, ok := tbl.Fields["form_urlencoded_tag_keys"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if ary, ok := kv.Value.(*ast.Array); ok {
for _, elem := range ary.Value {
if str, ok := elem.(*ast.String); ok {
c.FormUrlencodedTagKeys = append(c.FormUrlencodedTagKeys, str.Value)
}
}
}
}
}
c.MetricName = name
delete(tbl.Fields, "data_format")
delete(tbl.Fields, "separator")
delete(tbl.Fields, "templates")
delete(tbl.Fields, "tag_keys")
delete(tbl.Fields, "json_name_key")
delete(tbl.Fields, "json_query")
delete(tbl.Fields, "json_string_fields")
delete(tbl.Fields, "json_time_format")
delete(tbl.Fields, "json_time_key")
delete(tbl.Fields, "json_timezone")
delete(tbl.Fields, "json_strict")
delete(tbl.Fields, "data_type")
delete(tbl.Fields, "collectd_auth_file")
delete(tbl.Fields, "collectd_security_level")
delete(tbl.Fields, "collectd_typesdb")
delete(tbl.Fields, "collectd_parse_multivalue")
delete(tbl.Fields, "dropwizard_metric_registry_path")
delete(tbl.Fields, "dropwizard_time_path")
delete(tbl.Fields, "dropwizard_time_format")
delete(tbl.Fields, "dropwizard_tags_path")
delete(tbl.Fields, "dropwizard_tag_paths")
delete(tbl.Fields, "grok_named_patterns")
delete(tbl.Fields, "grok_patterns")
delete(tbl.Fields, "grok_custom_patterns")
delete(tbl.Fields, "grok_custom_pattern_files")
delete(tbl.Fields, "grok_timezone")
delete(tbl.Fields, "grok_unique_timestamp")
delete(tbl.Fields, "csv_column_names")
delete(tbl.Fields, "csv_column_types")
delete(tbl.Fields, "csv_comment")
delete(tbl.Fields, "csv_delimiter")
delete(tbl.Fields, "csv_field_columns")
delete(tbl.Fields, "csv_header_row_count")
delete(tbl.Fields, "csv_measurement_column")
delete(tbl.Fields, "csv_skip_columns")
delete(tbl.Fields, "csv_skip_rows")
delete(tbl.Fields, "csv_tag_columns")
delete(tbl.Fields, "csv_timestamp_column")
delete(tbl.Fields, "csv_timestamp_format")
delete(tbl.Fields, "csv_trim_space")
delete(tbl.Fields, "form_urlencoded_tag_keys")
return c, nil
}
// buildSerializer grabs the necessary entries from the ast.Table for creating
// a serializers.Serializer object, and creates it, which can then be added onto
// an Output object.
func buildSerializer(name string, tbl *ast.Table) (serializers.Serializer, error) {
c := &serializers.Config{TimestampUnits: time.Duration(1 * time.Second)}
if node, ok := tbl.Fields["data_format"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if str, ok := kv.Value.(*ast.String); ok {
c.DataFormat = str.Value
}
}
}
if c.DataFormat == "" {
c.DataFormat = "influx"
}
if node, ok := tbl.Fields["prefix"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if str, ok := kv.Value.(*ast.String); ok {
c.Prefix = str.Value
}
}
}
if node, ok := tbl.Fields["template"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if str, ok := kv.Value.(*ast.String); ok {
c.Template = str.Value
}
}
}
if node, ok := tbl.Fields["templates"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if ary, ok := kv.Value.(*ast.Array); ok {
for _, elem := range ary.Value {
if str, ok := elem.(*ast.String); ok {
c.Templates = append(c.Templates, str.Value)
}
}
}
}
}
if node, ok := tbl.Fields["influx_max_line_bytes"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if integer, ok := kv.Value.(*ast.Integer); ok {
v, err := integer.Int()
if err != nil {
return nil, err
}
c.InfluxMaxLineBytes = int(v)
}
}
}
if node, ok := tbl.Fields["influx_sort_fields"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if b, ok := kv.Value.(*ast.Boolean); ok {
var err error
c.InfluxSortFields, err = b.Boolean()
if err != nil {
return nil, err
}
}
}
}
if node, ok := tbl.Fields["influx_uint_support"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if b, ok := kv.Value.(*ast.Boolean); ok {
var err error
c.InfluxUintSupport, err = b.Boolean()
if err != nil {
return nil, err
}
}
}
}
if node, ok := tbl.Fields["graphite_tag_support"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if b, ok := kv.Value.(*ast.Boolean); ok {
var err error
c.GraphiteTagSupport, err = b.Boolean()
if err != nil {
return nil, err
}
}
}
}
if node, ok := tbl.Fields["graphite_separator"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if str, ok := kv.Value.(*ast.String); ok {
c.GraphiteSeparator = str.Value
}
}
}
if node, ok := tbl.Fields["json_timestamp_units"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if str, ok := kv.Value.(*ast.String); ok {
timestampVal, err := time.ParseDuration(str.Value)
if err != nil {
return nil, fmt.Errorf("Unable to parse json_timestamp_units as a duration, %s", err)
}
// now that we have a duration, truncate it to the nearest
// power of ten (just in case)
nearest_exponent := int64(math.Log10(float64(timestampVal.Nanoseconds())))
new_nanoseconds := int64(math.Pow(10.0, float64(nearest_exponent)))
c.TimestampUnits = time.Duration(new_nanoseconds)
}
}
}
if node, ok := tbl.Fields["splunkmetric_hec_routing"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if b, ok := kv.Value.(*ast.Boolean); ok {
var err error
c.HecRouting, err = b.Boolean()
if err != nil {
return nil, err
}
}
}
}
if node, ok := tbl.Fields["splunkmetric_multimetric"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if b, ok := kv.Value.(*ast.Boolean); ok {
var err error
c.SplunkmetricMultiMetric, err = b.Boolean()
if err != nil {
return nil, err
}
}
}
}
if node, ok := tbl.Fields["wavefront_source_override"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if ary, ok := kv.Value.(*ast.Array); ok {
for _, elem := range ary.Value {
if str, ok := elem.(*ast.String); ok {
c.WavefrontSourceOverride = append(c.WavefrontSourceOverride, str.Value)
}
}
}
}
}
if node, ok := tbl.Fields["wavefront_use_strict"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if b, ok := kv.Value.(*ast.Boolean); ok {
var err error
c.WavefrontUseStrict, err = b.Boolean()
if err != nil {
return nil, err
}
}
}
}
if node, ok := tbl.Fields["prometheus_export_timestamp"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if b, ok := kv.Value.(*ast.Boolean); ok {
var err error
c.PrometheusExportTimestamp, err = b.Boolean()
if err != nil {
return nil, err
}
}
}
}
if node, ok := tbl.Fields["prometheus_sort_metrics"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if b, ok := kv.Value.(*ast.Boolean); ok {
var err error
c.PrometheusSortMetrics, err = b.Boolean()
if err != nil {
return nil, err
}
}
}
}
if node, ok := tbl.Fields["prometheus_string_as_label"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if b, ok := kv.Value.(*ast.Boolean); ok {
var err error
c.PrometheusStringAsLabel, err = b.Boolean()
if err != nil {
return nil, err
}
}
}
}
delete(tbl.Fields, "influx_max_line_bytes")
delete(tbl.Fields, "influx_sort_fields")
delete(tbl.Fields, "influx_uint_support")
delete(tbl.Fields, "graphite_tag_support")
delete(tbl.Fields, "graphite_separator")
delete(tbl.Fields, "data_format")
delete(tbl.Fields, "prefix")
delete(tbl.Fields, "template")
delete(tbl.Fields, "templates")
delete(tbl.Fields, "json_timestamp_units")
delete(tbl.Fields, "splunkmetric_hec_routing")
delete(tbl.Fields, "splunkmetric_multimetric")
delete(tbl.Fields, "wavefront_source_override")
delete(tbl.Fields, "wavefront_use_strict")
delete(tbl.Fields, "prometheus_export_timestamp")
delete(tbl.Fields, "prometheus_sort_metrics")
delete(tbl.Fields, "prometheus_string_as_label")
return serializers.NewSerializer(c)
}
// buildOutput parses output specific items from the ast.Table,
// builds the filter and returns an
// models.OutputConfig to be inserted into models.RunningInput
// Note: error exists in the return for future calls that might require error
func buildOutput(name string, tbl *ast.Table) (*models.OutputConfig, error) {
filter, err := buildFilter(tbl)
if err != nil {
return nil, err
}
oc := &models.OutputConfig{
Name: name,
Filter: filter,
}
// TODO
// Outputs don't support FieldDrop/FieldPass, so set to NameDrop/NamePass
if len(oc.Filter.FieldDrop) > 0 {
oc.Filter.NameDrop = oc.Filter.FieldDrop
}
if len(oc.Filter.FieldPass) > 0 {
oc.Filter.NamePass = oc.Filter.FieldPass
}
if node, ok := tbl.Fields["flush_interval"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if str, ok := kv.Value.(*ast.String); ok {
dur, err := time.ParseDuration(str.Value)
if err != nil {
return nil, err
}
oc.FlushInterval = dur
}
}
}
if node, ok := tbl.Fields["flush_jitter"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if str, ok := kv.Value.(*ast.String); ok {
dur, err := time.ParseDuration(str.Value)
if err != nil {
return nil, err
}
oc.FlushJitter = new(time.Duration)
*oc.FlushJitter = dur
}
}
}
if node, ok := tbl.Fields["metric_buffer_limit"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if integer, ok := kv.Value.(*ast.Integer); ok {
v, err := integer.Int()
if err != nil {
return nil, err
}
oc.MetricBufferLimit = int(v)
}
}
}
if node, ok := tbl.Fields["metric_batch_size"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if integer, ok := kv.Value.(*ast.Integer); ok {
v, err := integer.Int()
if err != nil {
return nil, err
}
oc.MetricBatchSize = int(v)
}
}
}
if node, ok := tbl.Fields["alias"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if str, ok := kv.Value.(*ast.String); ok {
oc.Alias = str.Value
}
}
}
if node, ok := tbl.Fields["name_override"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if str, ok := kv.Value.(*ast.String); ok {
oc.NameOverride = str.Value
}
}
}
if node, ok := tbl.Fields["name_suffix"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if str, ok := kv.Value.(*ast.String); ok {
oc.NameSuffix = str.Value
}
}
}
if node, ok := tbl.Fields["name_prefix"]; ok {
if kv, ok := node.(*ast.KeyValue); ok {
if str, ok := kv.Value.(*ast.String); ok {
oc.NamePrefix = str.Value
}
}
}
delete(tbl.Fields, "flush_interval")
delete(tbl.Fields, "flush_jitter")
delete(tbl.Fields, "metric_buffer_limit")
delete(tbl.Fields, "metric_batch_size")
delete(tbl.Fields, "alias")
delete(tbl.Fields, "name_override")
delete(tbl.Fields, "name_suffix")
delete(tbl.Fields, "name_prefix")
return oc, nil
}
// unwrappable lets you retrieve the original telegraf.Processor from the
// StreamingProcessor. This is necessary because the toml Unmarshaller won't
// look inside composed types.
type unwrappable interface {
Unwrap() telegraf.Processor
}