telegraf/metric/parse.go

631 lines
15 KiB
Go

package metric
import (
"bytes"
"errors"
"fmt"
"time"
"github.com/influxdata/telegraf"
)
var (
ErrInvalidNumber = errors.New("invalid number")
)
const (
// the number of characters for the largest possible int64 (9223372036854775807)
maxInt64Digits = 19
// the number of characters for the smallest possible int64 (-9223372036854775808)
minInt64Digits = 20
// the number of characters required for the largest float64 before a range check
// would occur during parsing
maxFloat64Digits = 25
// the number of characters required for smallest float64 before a range check occur
// would occur during parsing
minFloat64Digits = 27
MaxKeyLength = 65535
)
// The following constants allow us to specify which state to move to
// next, when scanning sections of a Point.
const (
tagKeyState = iota
tagValueState
fieldsState
)
func Parse(buf []byte) ([]telegraf.Metric, error) {
return ParseWithDefaultTime(buf, time.Now())
}
func ParseWithDefaultTime(buf []byte, t time.Time) ([]telegraf.Metric, error) {
if len(buf) == 0 {
return []telegraf.Metric{}, nil
}
if len(buf) <= 6 {
return []telegraf.Metric{}, makeError("buffer too short", buf, 0)
}
metrics := make([]telegraf.Metric, 0, bytes.Count(buf, []byte("\n"))+1)
var errStr string
i := 0
for {
j := bytes.IndexByte(buf[i:], '\n')
if j == -1 {
break
}
if len(buf[i:i+j]) < 2 {
i += j + 1 // increment i past the previous newline
continue
}
m, err := parseMetric(buf[i:i+j], t)
if err != nil {
i += j + 1 // increment i past the previous newline
errStr += " " + err.Error()
continue
}
i += j + 1 // increment i past the previous newline
metrics = append(metrics, m)
}
if len(errStr) > 0 {
return metrics, fmt.Errorf(errStr)
}
return metrics, nil
}
func parseMetric(buf []byte, defaultTime time.Time) (telegraf.Metric, error) {
var dTime string
// scan the first block which is measurement[,tag1=value1,tag2=value=2...]
pos, key, err := scanKey(buf, 0)
if err != nil {
return nil, err
}
// measurement name is required
if len(key) == 0 {
return nil, fmt.Errorf("missing measurement")
}
if len(key) > MaxKeyLength {
return nil, fmt.Errorf("max key length exceeded: %v > %v", len(key), MaxKeyLength)
}
// scan the second block is which is field1=value1[,field2=value2,...]
pos, fields, err := scanFields(buf, pos)
if err != nil {
return nil, err
}
// at least one field is required
if len(fields) == 0 {
return nil, fmt.Errorf("missing fields")
}
// scan the last block which is an optional integer timestamp
pos, ts, err := scanTime(buf, pos)
if err != nil {
return nil, err
}
m := &metric{
fields: fields,
t: ts,
}
// parse out the measurement name
// namei is the index at which the "name" ends
namei := indexUnescapedByte(key, ',')
if namei < 1 {
// no tags
m.name = key
} else {
m.name = key[0:namei]
m.tags = key[namei:]
}
if len(m.t) == 0 {
if len(dTime) == 0 {
dTime = fmt.Sprint(defaultTime.UnixNano())
}
// use default time
m.t = []byte(dTime)
}
// here we copy on return because this allows us to later call
// AddTag, AddField, RemoveTag, RemoveField, etc. without worrying about
// modifying 'tag' bytes having an affect on 'field' bytes, for example.
return m.Copy(), nil
}
// scanKey scans buf starting at i for the measurement and tag portion of the point.
// It returns the ending position and the byte slice of key within buf. If there
// are tags, they will be sorted if they are not already.
func scanKey(buf []byte, i int) (int, []byte, error) {
start := skipWhitespace(buf, i)
i = start
// First scan the Point's measurement.
state, i, err := scanMeasurement(buf, i)
if err != nil {
return i, buf[start:i], err
}
// Optionally scan tags if needed.
if state == tagKeyState {
i, err = scanTags(buf, i)
if err != nil {
return i, buf[start:i], err
}
}
return i, buf[start:i], nil
}
// scanMeasurement examines the measurement part of a Point, returning
// the next state to move to, and the current location in the buffer.
func scanMeasurement(buf []byte, i int) (int, int, error) {
// Check first byte of measurement, anything except a comma is fine.
// It can't be a space, since whitespace is stripped prior to this
// function call.
if i >= len(buf) || buf[i] == ',' {
return -1, i, makeError("missing measurement", buf, i)
}
for {
i++
if i >= len(buf) {
// cpu
return -1, i, makeError("missing fields", buf, i)
}
if buf[i-1] == '\\' {
// Skip character (it's escaped).
continue
}
// Unescaped comma; move onto scanning the tags.
if buf[i] == ',' {
return tagKeyState, i + 1, nil
}
// Unescaped space; move onto scanning the fields.
if buf[i] == ' ' {
// cpu value=1.0
return fieldsState, i, nil
}
}
}
// scanTags examines all the tags in a Point, keeping track of and
// returning the updated indices slice, number of commas and location
// in buf where to start examining the Point fields.
func scanTags(buf []byte, i int) (int, error) {
var (
err error
state = tagKeyState
)
for {
switch state {
case tagKeyState:
i, err = scanTagsKey(buf, i)
state = tagValueState // tag value always follows a tag key
case tagValueState:
state, i, err = scanTagsValue(buf, i)
case fieldsState:
return i, nil
}
if err != nil {
return i, err
}
}
}
// scanTagsKey scans each character in a tag key.
func scanTagsKey(buf []byte, i int) (int, error) {
// First character of the key.
if i >= len(buf) || buf[i] == ' ' || buf[i] == ',' || buf[i] == '=' {
// cpu,{'', ' ', ',', '='}
return i, makeError("missing tag key", buf, i)
}
// Examine each character in the tag key until we hit an unescaped
// equals (the tag value), or we hit an error (i.e., unescaped
// space or comma).
for {
i++
// Either we reached the end of the buffer or we hit an
// unescaped comma or space.
if i >= len(buf) ||
((buf[i] == ' ' || buf[i] == ',') && buf[i-1] != '\\') {
// cpu,tag{'', ' ', ','}
return i, makeError("missing tag value", buf, i)
}
if buf[i] == '=' && buf[i-1] != '\\' {
// cpu,tag=
return i + 1, nil
}
}
}
// scanTagsValue scans each character in a tag value.
func scanTagsValue(buf []byte, i int) (int, int, error) {
// Tag value cannot be empty.
if i >= len(buf) || buf[i] == ',' || buf[i] == ' ' {
// cpu,tag={',', ' '}
return -1, i, makeError("missing tag value", buf, i)
}
// Examine each character in the tag value until we hit an unescaped
// comma (move onto next tag key), an unescaped space (move onto
// fields), or we error out.
for {
i++
if i >= len(buf) {
// cpu,tag=value
return -1, i, makeError("missing fields", buf, i)
}
// An unescaped equals sign is an invalid tag value.
if buf[i] == '=' && buf[i-1] != '\\' {
// cpu,tag={'=', 'fo=o'}
return -1, i, makeError("invalid tag format", buf, i)
}
if buf[i] == ',' && buf[i-1] != '\\' {
// cpu,tag=foo,
return tagKeyState, i + 1, nil
}
// cpu,tag=foo value=1.0
// cpu, tag=foo\= value=1.0
if buf[i] == ' ' && buf[i-1] != '\\' {
return fieldsState, i, nil
}
}
}
// scanFields scans buf, starting at i for the fields section of a point. It returns
// the ending position and the byte slice of the fields within buf
func scanFields(buf []byte, i int) (int, []byte, error) {
start := skipWhitespace(buf, i)
i = start
quoted := false
// tracks how many '=' we've seen
equals := 0
// tracks how many commas we've seen
commas := 0
for {
// reached the end of buf?
if i >= len(buf) {
break
}
// escaped characters?
if buf[i] == '\\' && i+1 < len(buf) {
i += 2
continue
}
// If the value is quoted, scan until we get to the end quote
// Only quote values in the field value since quotes are not significant
// in the field key
if buf[i] == '"' && equals > commas {
quoted = !quoted
i++
continue
}
// If we see an =, ensure that there is at least on char before and after it
if buf[i] == '=' && !quoted {
equals++
// check for "... =123" but allow "a\ =123"
if buf[i-1] == ' ' && buf[i-2] != '\\' {
return i, buf[start:i], makeError("missing field key", buf, i)
}
// check for "...a=123,=456" but allow "a=123,a\,=456"
if buf[i-1] == ',' && buf[i-2] != '\\' {
return i, buf[start:i], makeError("missing field key", buf, i)
}
// check for "... value="
if i+1 >= len(buf) {
return i, buf[start:i], makeError("missing field value", buf, i)
}
// check for "... value=,value2=..."
if buf[i+1] == ',' || buf[i+1] == ' ' {
return i, buf[start:i], makeError("missing field value", buf, i)
}
if isNumeric(buf[i+1]) || buf[i+1] == '-' || buf[i+1] == 'N' || buf[i+1] == 'n' {
var err error
i, err = scanNumber(buf, i+1)
if err != nil {
return i, buf[start:i], err
}
continue
}
// If next byte is not a double-quote, the value must be a boolean
if buf[i+1] != '"' {
var err error
i, _, err = scanBoolean(buf, i+1)
if err != nil {
return i, buf[start:i], err
}
continue
}
}
if buf[i] == ',' && !quoted {
commas++
}
// reached end of block?
if buf[i] == ' ' && !quoted {
break
}
i++
}
if quoted {
return i, buf[start:i], makeError("unbalanced quotes", buf, i)
}
// check that all field sections had key and values (e.g. prevent "a=1,b"
if equals == 0 || commas != equals-1 {
return i, buf[start:i], makeError("invalid field format", buf, i)
}
return i, buf[start:i], nil
}
// scanTime scans buf, starting at i for the time section of a point. It
// returns the ending position and the byte slice of the timestamp within buf
// and and error if the timestamp is not in the correct numeric format.
func scanTime(buf []byte, i int) (int, []byte, error) {
start := skipWhitespace(buf, i)
i = start
for {
// reached the end of buf?
if i >= len(buf) {
break
}
// Reached end of block or trailing whitespace?
if buf[i] == '\n' || buf[i] == ' ' {
break
}
// Handle negative timestamps
if i == start && buf[i] == '-' {
i++
continue
}
// Timestamps should be integers, make sure they are so we don't need
// to actually parse the timestamp until needed.
if buf[i] < '0' || buf[i] > '9' {
return i, buf[start:i], makeError("invalid timestamp", buf, i)
}
i++
}
return i, buf[start:i], nil
}
func isNumeric(b byte) bool {
return (b >= '0' && b <= '9') || b == '.'
}
// scanNumber returns the end position within buf, start at i after
// scanning over buf for an integer, or float. It returns an
// error if a invalid number is scanned.
func scanNumber(buf []byte, i int) (int, error) {
start := i
var isInt bool
// Is negative number?
if i < len(buf) && buf[i] == '-' {
i++
// There must be more characters now, as just '-' is illegal.
if i == len(buf) {
return i, ErrInvalidNumber
}
}
// how many decimal points we've see
decimal := false
// indicates the number is float in scientific notation
scientific := false
for {
if i >= len(buf) {
break
}
if buf[i] == ',' || buf[i] == ' ' {
break
}
if buf[i] == 'i' && i > start && !isInt {
isInt = true
i++
continue
}
if buf[i] == '.' {
// Can't have more than 1 decimal (e.g. 1.1.1 should fail)
if decimal {
return i, ErrInvalidNumber
}
decimal = true
}
// `e` is valid for floats but not as the first char
if i > start && (buf[i] == 'e' || buf[i] == 'E') {
scientific = true
i++
continue
}
// + and - are only valid at this point if they follow an e (scientific notation)
if (buf[i] == '+' || buf[i] == '-') && (buf[i-1] == 'e' || buf[i-1] == 'E') {
i++
continue
}
// NaN is an unsupported value
if i+2 < len(buf) && (buf[i] == 'N' || buf[i] == 'n') {
return i, ErrInvalidNumber
}
if !isNumeric(buf[i]) {
return i, ErrInvalidNumber
}
i++
}
if isInt && (decimal || scientific) {
return i, ErrInvalidNumber
}
numericDigits := i - start
if isInt {
numericDigits--
}
if decimal {
numericDigits--
}
if buf[start] == '-' {
numericDigits--
}
if numericDigits == 0 {
return i, ErrInvalidNumber
}
// It's more common that numbers will be within min/max range for their type but we need to prevent
// out or range numbers from being parsed successfully. This uses some simple heuristics to decide
// if we should parse the number to the actual type. It does not do it all the time because it incurs
// extra allocations and we end up converting the type again when writing points to disk.
if isInt {
// Make sure the last char is an 'i' for integers (e.g. 9i10 is not valid)
if buf[i-1] != 'i' {
return i, ErrInvalidNumber
}
// Parse the int to check bounds the number of digits could be larger than the max range
// We subtract 1 from the index to remove the `i` from our tests
if len(buf[start:i-1]) >= maxInt64Digits || len(buf[start:i-1]) >= minInt64Digits {
if _, err := parseIntBytes(buf[start:i-1], 10, 64); err != nil {
return i, makeError(fmt.Sprintf("unable to parse integer %s: %s", buf[start:i-1], err), buf, i)
}
}
} else {
// Parse the float to check bounds if it's scientific or the number of digits could be larger than the max range
if scientific || len(buf[start:i]) >= maxFloat64Digits || len(buf[start:i]) >= minFloat64Digits {
if _, err := parseFloatBytes(buf[start:i], 10); err != nil {
return i, makeError("invalid float", buf, i)
}
}
}
return i, nil
}
// scanBoolean returns the end position within buf, start at i after
// scanning over buf for boolean. Valid values for a boolean are
// t, T, true, TRUE, f, F, false, FALSE. It returns an error if a invalid boolean
// is scanned.
func scanBoolean(buf []byte, i int) (int, []byte, error) {
start := i
if i < len(buf) && (buf[i] != 't' && buf[i] != 'f' && buf[i] != 'T' && buf[i] != 'F') {
return i, buf[start:i], makeError("invalid value", buf, i)
}
i++
for {
if i >= len(buf) {
break
}
if buf[i] == ',' || buf[i] == ' ' {
break
}
i++
}
// Single char bool (t, T, f, F) is ok
if i-start == 1 {
return i, buf[start:i], nil
}
// length must be 4 for true or TRUE
if (buf[start] == 't' || buf[start] == 'T') && i-start != 4 {
return i, buf[start:i], makeError("invalid boolean", buf, i)
}
// length must be 5 for false or FALSE
if (buf[start] == 'f' || buf[start] == 'F') && i-start != 5 {
return i, buf[start:i], makeError("invalid boolean", buf, i)
}
// Otherwise
valid := false
switch buf[start] {
case 't':
valid = bytes.Equal(buf[start:i], []byte("true"))
case 'f':
valid = bytes.Equal(buf[start:i], []byte("false"))
case 'T':
valid = bytes.Equal(buf[start:i], []byte("TRUE")) || bytes.Equal(buf[start:i], []byte("True"))
case 'F':
valid = bytes.Equal(buf[start:i], []byte("FALSE")) || bytes.Equal(buf[start:i], []byte("False"))
}
if !valid {
return i, buf[start:i], makeError("invalid boolean", buf, i)
}
return i, buf[start:i], nil
}
// skipWhitespace returns the end position within buf, starting at i after
// scanning over spaces in tags
func skipWhitespace(buf []byte, i int) int {
for i < len(buf) {
if buf[i] != ' ' && buf[i] != '\t' && buf[i] != 0 {
break
}
i++
}
return i
}
// makeError is a helper function for making a metric parsing error.
// reason is the reason that the error occured.
// buf should be the current buffer we are parsing.
// i is the current index, to give some context on where in the buffer we are.
func makeError(reason string, buf []byte, i int) error {
return fmt.Errorf("metric parsing error, reason: [%s], buffer: [%s], index: [%d]",
reason, buf, i)
}