telegraf/agent/agent.go

1095 lines
26 KiB
Go

package agent
import (
"context"
"fmt"
"log"
"os"
"runtime"
"sort"
"sync"
"time"
"github.com/influxdata/telegraf"
"github.com/influxdata/telegraf/config"
"github.com/influxdata/telegraf/internal"
"github.com/influxdata/telegraf/models"
"github.com/influxdata/telegraf/plugins/serializers/influx"
)
// Agent runs a set of plugins.
type Agent struct {
Config *config.Config
}
// NewAgent returns an Agent for the given Config.
func NewAgent(config *config.Config) (*Agent, error) {
a := &Agent{
Config: config,
}
return a, nil
}
// inputUnit is a group of input plugins and the shared channel they write to.
//
// ┌───────┐
// │ Input │───┐
// └───────┘ │
// ┌───────┐ │ ______
// │ Input │───┼──▶ ()_____)
// └───────┘ │
// ┌───────┐ │
// │ Input │───┘
// └───────┘
type inputUnit struct {
dst chan<- telegraf.Metric
inputs []*models.RunningInput
}
// ______ ┌───────────┐ ______
// ()_____)──▶ │ Processor │──▶ ()_____)
// └───────────┘
type processorUnit struct {
src <-chan telegraf.Metric
dst chan<- telegraf.Metric
processor *models.RunningProcessor
}
// aggregatorUnit is a group of Aggregators and their source and sink channels.
// Typically the aggregators write to a processor channel and pass the original
// metrics to the output channel. The sink channels may be the same channel.
//
// ┌────────────┐
// ┌──▶ │ Aggregator │───┐
// │ └────────────┘ │
// ______ │ ┌────────────┐ │ ______
// ()_____)───┼──▶ │ Aggregator │───┼──▶ ()_____)
// │ └────────────┘ │
// │ ┌────────────┐ │
// ├──▶ │ Aggregator │───┘
// │ └────────────┘
// │ ______
// └────────────────────────▶ ()_____)
type aggregatorUnit struct {
src <-chan telegraf.Metric
aggC chan<- telegraf.Metric
outputC chan<- telegraf.Metric
aggregators []*models.RunningAggregator
}
// outputUnit is a group of Outputs and their source channel. Metrics on the
// channel are written to all outputs.
//
// ┌────────┐
// ┌──▶ │ Output │
// │ └────────┘
// ______ ┌─────┐ │ ┌────────┐
// ()_____)──▶ │ Fan │───┼──▶ │ Output │
// └─────┘ │ └────────┘
// │ ┌────────┐
// └──▶ │ Output │
// └────────┘
type outputUnit struct {
src <-chan telegraf.Metric
outputs []*models.RunningOutput
}
// Run starts and runs the Agent until the context is done.
func (a *Agent) Run(ctx context.Context) error {
log.Printf("I! [agent] Config: Interval:%s, Quiet:%#v, Hostname:%#v, "+
"Flush Interval:%s",
a.Config.Agent.Interval.Duration, a.Config.Agent.Quiet,
a.Config.Agent.Hostname, a.Config.Agent.FlushInterval.Duration)
log.Printf("D! [agent] Initializing plugins")
err := a.initPlugins()
if err != nil {
return err
}
startTime := time.Now()
log.Printf("D! [agent] Connecting outputs")
next, ou, err := a.startOutputs(ctx, a.Config.Outputs)
if err != nil {
return err
}
var apu []*processorUnit
var au *aggregatorUnit
if len(a.Config.Aggregators) != 0 {
aggC := next
if len(a.Config.AggProcessors) != 0 {
aggC, apu, err = a.startProcessors(next, a.Config.AggProcessors)
if err != nil {
return err
}
}
next, au, err = a.startAggregators(aggC, next, a.Config.Aggregators)
if err != nil {
return err
}
}
var pu []*processorUnit
if len(a.Config.Processors) != 0 {
next, pu, err = a.startProcessors(next, a.Config.Processors)
if err != nil {
return err
}
}
iu, err := a.startInputs(next, a.Config.Inputs)
if err != nil {
return err
}
var wg sync.WaitGroup
wg.Add(1)
go func() {
defer wg.Done()
err = a.runOutputs(ou)
if err != nil {
log.Printf("E! [agent] Error running outputs: %v", err)
}
}()
if au != nil {
wg.Add(1)
go func() {
defer wg.Done()
err = a.runProcessors(apu)
if err != nil {
log.Printf("E! [agent] Error running processors: %v", err)
}
}()
wg.Add(1)
go func() {
defer wg.Done()
err = a.runAggregators(startTime, au)
if err != nil {
log.Printf("E! [agent] Error running aggregators: %v", err)
}
}()
}
if pu != nil {
wg.Add(1)
go func() {
defer wg.Done()
err = a.runProcessors(pu)
if err != nil {
log.Printf("E! [agent] Error running processors: %v", err)
}
}()
}
wg.Add(1)
go func() {
defer wg.Done()
err = a.runInputs(ctx, startTime, iu)
if err != nil {
log.Printf("E! [agent] Error running inputs: %v", err)
}
}()
wg.Wait()
log.Printf("D! [agent] Stopped Successfully")
return err
}
// initPlugins runs the Init function on plugins.
func (a *Agent) initPlugins() error {
for _, input := range a.Config.Inputs {
err := input.Init()
if err != nil {
return fmt.Errorf("could not initialize input %s: %v",
input.LogName(), err)
}
}
for _, processor := range a.Config.Processors {
err := processor.Init()
if err != nil {
return fmt.Errorf("could not initialize processor %s: %v",
processor.Config.Name, err)
}
}
for _, aggregator := range a.Config.Aggregators {
err := aggregator.Init()
if err != nil {
return fmt.Errorf("could not initialize aggregator %s: %v",
aggregator.Config.Name, err)
}
}
for _, output := range a.Config.Outputs {
err := output.Init()
if err != nil {
return fmt.Errorf("could not initialize output %s: %v",
output.Config.Name, err)
}
}
return nil
}
func (a *Agent) startInputs(
dst chan<- telegraf.Metric,
inputs []*models.RunningInput,
) (*inputUnit, error) {
log.Printf("D! [agent] Starting service inputs")
unit := &inputUnit{
dst: dst,
}
for _, input := range inputs {
if si, ok := input.Input.(telegraf.ServiceInput); ok {
// Service input plugins are not subject to timestamp rounding.
// This only applies to the accumulator passed to Start(), the
// Gather() accumulator does apply rounding according to the
// precision agent setting.
acc := NewAccumulator(input, dst)
acc.SetPrecision(time.Nanosecond)
err := si.Start(acc)
if err != nil {
stopServiceInputs(unit.inputs)
return nil, fmt.Errorf("starting input %s: %w", input.LogName(), err)
}
}
unit.inputs = append(unit.inputs, input)
}
return unit, nil
}
// runInputs starts and triggers the periodic gather for Inputs.
//
// When the context is done the timers are stopped and this function returns
// after all ongoing Gather calls complete.
func (a *Agent) runInputs(
ctx context.Context,
startTime time.Time,
unit *inputUnit,
) error {
var wg sync.WaitGroup
for _, input := range unit.inputs {
interval := a.Config.Agent.Interval.Duration
jitter := a.Config.Agent.CollectionJitter.Duration
// Overwrite agent interval if this plugin has its own.
if input.Config.Interval != 0 {
interval = input.Config.Interval
}
var ticker Ticker
if a.Config.Agent.RoundInterval {
ticker = NewAlignedTicker(startTime, interval, jitter)
} else {
ticker = NewUnalignedTicker(interval, jitter)
}
defer ticker.Stop()
acc := NewAccumulator(input, unit.dst)
acc.SetPrecision(a.Precision())
wg.Add(1)
go func(input *models.RunningInput) {
defer wg.Done()
a.gatherLoop(ctx, acc, input, ticker)
}(input)
}
wg.Wait()
log.Printf("D! [agent] Stopping service inputs")
stopServiceInputs(unit.inputs)
close(unit.dst)
log.Printf("D! [agent] Input channel closed")
return nil
}
// testStartInputs is a variation of startInputs for use in --test and --once
// mode. It differs by logging Start errors and returning only plugins
// successfully started.
func (a *Agent) testStartInputs(
dst chan<- telegraf.Metric,
inputs []*models.RunningInput,
) (*inputUnit, error) {
log.Printf("D! [agent] Starting service inputs")
unit := &inputUnit{
dst: dst,
}
for _, input := range inputs {
if si, ok := input.Input.(telegraf.ServiceInput); ok {
// Service input plugins are not subject to timestamp rounding.
// This only applies to the accumulator passed to Start(), the
// Gather() accumulator does apply rounding according to the
// precision agent setting.
acc := NewAccumulator(input, dst)
acc.SetPrecision(time.Nanosecond)
err := si.Start(acc)
if err != nil {
log.Printf("E! [agent] Starting input %s: %v", input.LogName(), err)
}
}
unit.inputs = append(unit.inputs, input)
}
return unit, nil
}
// testRunInputs is a variation of runInputs for use in --test and --once mode.
// Instead of using a ticker to run the inputs they are called once immediately.
func (a *Agent) testRunInputs(
ctx context.Context,
wait time.Duration,
unit *inputUnit,
) error {
var wg sync.WaitGroup
nul := make(chan telegraf.Metric)
go func() {
for range nul {
}
}()
for _, input := range unit.inputs {
wg.Add(1)
go func(input *models.RunningInput) {
defer wg.Done()
// Run plugins that require multiple gathers to calculate rate
// and delta metrics twice.
switch input.Config.Name {
case "cpu", "mongodb", "procstat":
nulAcc := NewAccumulator(input, nul)
nulAcc.SetPrecision(a.Precision())
if err := input.Input.Gather(nulAcc); err != nil {
nulAcc.AddError(err)
}
time.Sleep(500 * time.Millisecond)
}
acc := NewAccumulator(input, unit.dst)
acc.SetPrecision(a.Precision())
if err := input.Input.Gather(acc); err != nil {
acc.AddError(err)
}
}(input)
}
wg.Wait()
internal.SleepContext(ctx, wait)
log.Printf("D! [agent] Stopping service inputs")
stopServiceInputs(unit.inputs)
close(unit.dst)
log.Printf("D! [agent] Input channel closed")
return nil
}
// stopServiceInputs stops all service inputs.
func stopServiceInputs(inputs []*models.RunningInput) {
for _, input := range inputs {
if si, ok := input.Input.(telegraf.ServiceInput); ok {
si.Stop()
}
}
}
// gather runs an input's gather function periodically until the context is
// done.
func (a *Agent) gatherLoop(
ctx context.Context,
acc telegraf.Accumulator,
input *models.RunningInput,
ticker Ticker,
) {
defer panicRecover(input)
for {
select {
case <-ticker.Elapsed():
err := a.gatherOnce(acc, input, ticker)
if err != nil {
acc.AddError(err)
}
case <-ctx.Done():
return
}
}
}
// gatherOnce runs the input's Gather function once, logging a warning each
// interval it fails to complete before.
func (a *Agent) gatherOnce(
acc telegraf.Accumulator,
input *models.RunningInput,
ticker Ticker,
) error {
done := make(chan error)
go func() {
done <- input.Gather(acc)
}()
for {
select {
case err := <-done:
return err
case <-ticker.Elapsed():
log.Printf("W! [agent] [%s] did not complete within its interval",
input.LogName())
}
}
}
// startProcessors sets up the processor chain and calls Start on all
// processors. If an error occurs any started processors are Stopped.
func (a *Agent) startProcessors(
dst chan<- telegraf.Metric,
processors models.RunningProcessors,
) (chan<- telegraf.Metric, []*processorUnit, error) {
var units []*processorUnit
// Sort from last to first
sort.SliceStable(processors, func(i, j int) bool {
return processors[i].Config.Order > processors[j].Config.Order
})
var src chan telegraf.Metric
for _, processor := range processors {
src = make(chan telegraf.Metric, 100)
acc := NewAccumulator(processor, dst)
err := processor.Start(acc)
if err != nil {
for _, u := range units {
u.processor.Stop()
close(u.dst)
}
return nil, nil, fmt.Errorf("starting processor %s: %w", processor.LogName(), err)
}
units = append(units, &processorUnit{
src: src,
dst: dst,
processor: processor,
})
dst = src
}
return src, units, nil
}
// runProcessors begins processing metrics and runs until the source channel is
// closed and all metrics have been written.
func (a *Agent) runProcessors(
units []*processorUnit,
) error {
var wg sync.WaitGroup
for _, unit := range units {
wg.Add(1)
go func(unit *processorUnit) {
defer wg.Done()
acc := NewAccumulator(unit.processor, unit.dst)
for m := range unit.src {
unit.processor.Add(m, acc)
}
unit.processor.Stop()
close(unit.dst)
log.Printf("D! [agent] Processor channel closed")
}(unit)
}
wg.Wait()
return nil
}
// startAggregators sets up the aggregator unit and returns the source channel.
func (a *Agent) startAggregators(
aggC chan<- telegraf.Metric,
outputC chan<- telegraf.Metric,
aggregators []*models.RunningAggregator,
) (chan<- telegraf.Metric, *aggregatorUnit, error) {
src := make(chan telegraf.Metric, 100)
unit := &aggregatorUnit{
src: src,
aggC: aggC,
outputC: outputC,
aggregators: aggregators,
}
return src, unit, nil
}
// runAggregators beings aggregating metrics and runs until the source channel
// is closed and all metrics have been written.
func (a *Agent) runAggregators(
startTime time.Time,
unit *aggregatorUnit,
) error {
ctx, cancel := context.WithCancel(context.Background())
// Before calling Add, initialize the aggregation window. This ensures
// that any metric created after start time will be aggregated.
for _, agg := range a.Config.Aggregators {
since, until := updateWindow(startTime, a.Config.Agent.RoundInterval, agg.Period())
agg.UpdateWindow(since, until)
}
var wg sync.WaitGroup
wg.Add(1)
go func() {
defer wg.Done()
for metric := range unit.src {
var dropOriginal bool
for _, agg := range a.Config.Aggregators {
if ok := agg.Add(metric); ok {
dropOriginal = true
}
}
if !dropOriginal {
unit.outputC <- metric // keep original.
} else {
metric.Drop()
}
}
cancel()
}()
for _, agg := range a.Config.Aggregators {
wg.Add(1)
go func(agg *models.RunningAggregator) {
defer wg.Done()
acc := NewAccumulator(agg, unit.aggC)
acc.SetPrecision(a.Precision())
a.push(ctx, agg, acc)
}(agg)
}
wg.Wait()
// In the case that there are no processors, both aggC and outputC are the
// same channel. If there are processors, we close the aggC and the
// processor chain will close the outputC when it finishes processing.
close(unit.aggC)
log.Printf("D! [agent] Aggregator channel closed")
return nil
}
func updateWindow(start time.Time, roundInterval bool, period time.Duration) (time.Time, time.Time) {
var until time.Time
if roundInterval {
until = internal.AlignTime(start, period)
if until == start {
until = internal.AlignTime(start.Add(time.Nanosecond), period)
}
} else {
until = start.Add(period)
}
since := until.Add(-period)
return since, until
}
// push runs the push for a single aggregator every period.
func (a *Agent) push(
ctx context.Context,
aggregator *models.RunningAggregator,
acc telegraf.Accumulator,
) {
for {
// Ensures that Push will be called for each period, even if it has
// already elapsed before this function is called. This is guaranteed
// because so long as only Push updates the EndPeriod. This method
// also avoids drift by not using a ticker.
until := time.Until(aggregator.EndPeriod())
select {
case <-time.After(until):
aggregator.Push(acc)
break
case <-ctx.Done():
aggregator.Push(acc)
return
}
}
}
// startOutputs calls Connect on all outputs and returns the source channel.
// If an error occurs calling Connect all stared plugins have Close called.
func (a *Agent) startOutputs(
ctx context.Context,
outputs []*models.RunningOutput,
) (chan<- telegraf.Metric, *outputUnit, error) {
src := make(chan telegraf.Metric, 100)
unit := &outputUnit{src: src}
for _, output := range outputs {
err := a.connectOutput(ctx, output)
if err != nil {
for _, output := range unit.outputs {
output.Close()
}
return nil, nil, fmt.Errorf("connecting output %s: %w", output.LogName(), err)
}
unit.outputs = append(unit.outputs, output)
}
return src, unit, nil
}
// connectOutputs connects to all outputs.
func (a *Agent) connectOutput(ctx context.Context, output *models.RunningOutput) error {
log.Printf("D! [agent] Attempting connection to [%s]", output.LogName())
err := output.Output.Connect()
if err != nil {
log.Printf("E! [agent] Failed to connect to [%s], retrying in 15s, "+
"error was '%s'", output.LogName(), err)
err := internal.SleepContext(ctx, 15*time.Second)
if err != nil {
return err
}
err = output.Output.Connect()
if err != nil {
return fmt.Errorf("Error connecting to output %q: %w", output.LogName(), err)
}
}
log.Printf("D! [agent] Successfully connected to %s", output.LogName())
return nil
}
// runOutputs begins processing metrics and returns until the source channel is
// closed and all metrics have been written. On shutdown metrics will be
// written one last time and dropped if unsuccessful.
func (a *Agent) runOutputs(
unit *outputUnit,
) error {
var wg sync.WaitGroup
// Start flush loop
interval := a.Config.Agent.FlushInterval.Duration
jitter := a.Config.Agent.FlushJitter.Duration
ctx, cancel := context.WithCancel(context.Background())
for _, output := range unit.outputs {
interval := interval
// Overwrite agent flush_interval if this plugin has its own.
if output.Config.FlushInterval != 0 {
interval = output.Config.FlushInterval
}
jitter := jitter
// Overwrite agent flush_jitter if this plugin has its own.
if output.Config.FlushJitter != nil {
jitter = *output.Config.FlushJitter
}
wg.Add(1)
go func(output *models.RunningOutput) {
defer wg.Done()
ticker := NewRollingTicker(interval, jitter)
defer ticker.Stop()
a.flushLoop(ctx, output, ticker)
}(output)
}
for metric := range unit.src {
for i, output := range unit.outputs {
if i == len(a.Config.Outputs)-1 {
output.AddMetric(metric)
} else {
output.AddMetric(metric.Copy())
}
}
}
log.Println("I! [agent] Hang on, flushing any cached metrics before shutdown")
cancel()
wg.Wait()
return nil
}
// flushLoop runs an output's flush function periodically until the context is
// done.
func (a *Agent) flushLoop(
ctx context.Context,
output *models.RunningOutput,
ticker Ticker,
) {
logError := func(err error) {
if err != nil {
log.Printf("E! [agent] Error writing to %s: %v", output.LogName(), err)
}
}
// watch for flush requests
flushRequested := make(chan os.Signal, 1)
watchForFlushSignal(flushRequested)
defer stopListeningForFlushSignal(flushRequested)
for {
// Favor shutdown over other methods.
select {
case <-ctx.Done():
logError(a.flushOnce(output, ticker, output.Write))
return
default:
}
select {
case <-ctx.Done():
logError(a.flushOnce(output, ticker, output.Write))
return
case <-ticker.Elapsed():
logError(a.flushOnce(output, ticker, output.Write))
case <-flushRequested:
logError(a.flushOnce(output, ticker, output.Write))
case <-output.BatchReady:
// Favor the ticker over batch ready
select {
case <-ticker.Elapsed():
logError(a.flushOnce(output, ticker, output.Write))
default:
logError(a.flushOnce(output, ticker, output.WriteBatch))
}
}
}
}
// flushOnce runs the output's Write function once, logging a warning each
// interval it fails to complete before.
func (a *Agent) flushOnce(
output *models.RunningOutput,
ticker Ticker,
writeFunc func() error,
) error {
done := make(chan error)
go func() {
done <- writeFunc()
}()
for {
select {
case err := <-done:
output.LogBufferStatus()
return err
case <-ticker.Elapsed():
log.Printf("W! [agent] [%q] did not complete within its flush interval",
output.LogName())
output.LogBufferStatus()
}
}
}
// Test runs the inputs, processors and aggregators for a single gather and
// writes the metrics to stdout.
func (a *Agent) Test(ctx context.Context, wait time.Duration) error {
src := make(chan telegraf.Metric, 100)
var wg sync.WaitGroup
wg.Add(1)
go func() {
defer wg.Done()
s := influx.NewSerializer()
s.SetFieldSortOrder(influx.SortFields)
for metric := range src {
octets, err := s.Serialize(metric)
if err == nil {
fmt.Print("> ", string(octets))
}
metric.Reject()
}
}()
err := a.test(ctx, wait, src)
if err != nil {
return err
}
wg.Wait()
if models.GlobalGatherErrors.Get() != 0 {
return fmt.Errorf("input plugins recorded %d errors", models.GlobalGatherErrors.Get())
}
return nil
}
// Test runs the agent and performs a single gather sending output to the
// outputF. After gathering pauses for the wait duration to allow service
// inputs to run.
func (a *Agent) test(ctx context.Context, wait time.Duration, outputC chan<- telegraf.Metric) error {
log.Printf("D! [agent] Initializing plugins")
err := a.initPlugins()
if err != nil {
return err
}
startTime := time.Now()
next := outputC
var apu []*processorUnit
var au *aggregatorUnit
if len(a.Config.Aggregators) != 0 {
procC := next
if len(a.Config.AggProcessors) != 0 {
procC, apu, err = a.startProcessors(next, a.Config.AggProcessors)
if err != nil {
return err
}
}
next, au, err = a.startAggregators(procC, next, a.Config.Aggregators)
if err != nil {
return err
}
}
var pu []*processorUnit
if len(a.Config.Processors) != 0 {
next, pu, err = a.startProcessors(next, a.Config.Processors)
if err != nil {
return err
}
}
iu, err := a.testStartInputs(next, a.Config.Inputs)
if err != nil {
return err
}
var wg sync.WaitGroup
if au != nil {
wg.Add(1)
go func() {
defer wg.Done()
err = a.runProcessors(apu)
if err != nil {
log.Printf("E! [agent] Error running processors: %v", err)
}
}()
wg.Add(1)
go func() {
defer wg.Done()
err = a.runAggregators(startTime, au)
if err != nil {
log.Printf("E! [agent] Error running aggregators: %v", err)
}
}()
}
if pu != nil {
wg.Add(1)
go func() {
defer wg.Done()
err = a.runProcessors(pu)
if err != nil {
log.Printf("E! [agent] Error running processors: %v", err)
}
}()
}
wg.Add(1)
go func() {
defer wg.Done()
err = a.testRunInputs(ctx, wait, iu)
if err != nil {
log.Printf("E! [agent] Error running inputs: %v", err)
}
}()
wg.Wait()
log.Printf("D! [agent] Stopped Successfully")
return nil
}
// Once runs the full agent for a single gather.
func (a *Agent) Once(ctx context.Context, wait time.Duration) error {
err := a.once(ctx, wait)
if err != nil {
return err
}
if models.GlobalGatherErrors.Get() != 0 {
return fmt.Errorf("input plugins recorded %d errors", models.GlobalGatherErrors.Get())
}
unsent := 0
for _, output := range a.Config.Outputs {
unsent += output.BufferLength()
}
if unsent != 0 {
return fmt.Errorf("output plugins unable to send %d metrics", unsent)
}
return nil
}
// On runs the agent and performs a single gather sending output to the
// outputF. After gathering pauses for the wait duration to allow service
// inputs to run.
func (a *Agent) once(ctx context.Context, wait time.Duration) error {
log.Printf("D! [agent] Initializing plugins")
err := a.initPlugins()
if err != nil {
return err
}
startTime := time.Now()
log.Printf("D! [agent] Connecting outputs")
next, ou, err := a.startOutputs(ctx, a.Config.Outputs)
if err != nil {
return err
}
var apu []*processorUnit
var au *aggregatorUnit
if len(a.Config.Aggregators) != 0 {
procC := next
if len(a.Config.AggProcessors) != 0 {
procC, apu, err = a.startProcessors(next, a.Config.AggProcessors)
if err != nil {
return err
}
}
next, au, err = a.startAggregators(procC, next, a.Config.Aggregators)
if err != nil {
return err
}
}
var pu []*processorUnit
if len(a.Config.Processors) != 0 {
next, pu, err = a.startProcessors(next, a.Config.Processors)
if err != nil {
return err
}
}
iu, err := a.testStartInputs(next, a.Config.Inputs)
if err != nil {
return err
}
var wg sync.WaitGroup
wg.Add(1)
go func() {
defer wg.Done()
err = a.runOutputs(ou)
if err != nil {
log.Printf("E! [agent] Error running outputs: %v", err)
}
}()
if au != nil {
wg.Add(1)
go func() {
defer wg.Done()
err = a.runProcessors(apu)
if err != nil {
log.Printf("E! [agent] Error running processors: %v", err)
}
}()
wg.Add(1)
go func() {
defer wg.Done()
err = a.runAggregators(startTime, au)
if err != nil {
log.Printf("E! [agent] Error running aggregators: %v", err)
}
}()
}
if pu != nil {
wg.Add(1)
go func() {
defer wg.Done()
err = a.runProcessors(pu)
if err != nil {
log.Printf("E! [agent] Error running processors: %v", err)
}
}()
}
wg.Add(1)
go func() {
defer wg.Done()
err = a.testRunInputs(ctx, wait, iu)
if err != nil {
log.Printf("E! [agent] Error running inputs: %v", err)
}
}()
wg.Wait()
log.Printf("D! [agent] Stopped Successfully")
return nil
}
// Returns the rounding precision for metrics.
func (a *Agent) Precision() time.Duration {
precision := a.Config.Agent.Precision.Duration
interval := a.Config.Agent.Interval.Duration
if precision > 0 {
return precision
}
switch {
case interval >= time.Second:
return time.Second
case interval >= time.Millisecond:
return time.Millisecond
case interval >= time.Microsecond:
return time.Microsecond
default:
return time.Nanosecond
}
}
// panicRecover displays an error if an input panics.
func panicRecover(input *models.RunningInput) {
if err := recover(); err != nil {
trace := make([]byte, 2048)
runtime.Stack(trace, true)
log.Printf("E! FATAL: [%s] panicked: %s, Stack:\n%s",
input.LogName(), err, trace)
log.Println("E! PLEASE REPORT THIS PANIC ON GITHUB with " +
"stack trace, configuration, and OS information: " +
"https://github.com/influxdata/telegraf/issues/new/choose")
}
}