446 lines
12 KiB
Go
446 lines
12 KiB
Go
package topk
|
|
|
|
import (
|
|
"fmt"
|
|
"log"
|
|
"math"
|
|
"sort"
|
|
"time"
|
|
|
|
"github.com/influxdata/telegraf"
|
|
"github.com/influxdata/telegraf/filter"
|
|
"github.com/influxdata/telegraf/internal"
|
|
"github.com/influxdata/telegraf/metric"
|
|
"github.com/influxdata/telegraf/plugins/processors"
|
|
)
|
|
|
|
type TopK struct {
|
|
Period internal.Duration
|
|
K int
|
|
GroupBy []string `toml:"group_by"`
|
|
Fields []string
|
|
Aggregation string
|
|
Bottomk bool
|
|
AddGroupByTag string `toml:"add_groupby_tag"`
|
|
AddRankFields []string `toml:"add_rank_fields"`
|
|
AddAggregateFields []string `toml:"add_aggregate_fields"`
|
|
|
|
cache map[string][]telegraf.Metric
|
|
tagsGlobs filter.Filter
|
|
rankFieldSet map[string]bool
|
|
aggFieldSet map[string]bool
|
|
lastAggregation time.Time
|
|
}
|
|
|
|
func New() *TopK {
|
|
// Create object
|
|
topk := TopK{}
|
|
|
|
// Setup defaults
|
|
topk.Period = internal.Duration{Duration: time.Second * time.Duration(10)}
|
|
topk.K = 10
|
|
topk.Fields = []string{"value"}
|
|
topk.Aggregation = "mean"
|
|
topk.GroupBy = []string{"*"}
|
|
topk.AddGroupByTag = ""
|
|
topk.AddRankFields = []string{}
|
|
topk.AddAggregateFields = []string{}
|
|
|
|
// Initialize cache
|
|
topk.Reset()
|
|
|
|
return &topk
|
|
}
|
|
|
|
var sampleConfig = `
|
|
## How many seconds between aggregations
|
|
# period = 10
|
|
|
|
## How many top metrics to return
|
|
# k = 10
|
|
|
|
## Over which tags should the aggregation be done. Globs can be specified, in
|
|
## which case any tag matching the glob will aggregated over. If set to an
|
|
## empty list is no aggregation over tags is done
|
|
# group_by = ['*']
|
|
|
|
## Over which fields are the top k are calculated
|
|
# fields = ["value"]
|
|
|
|
## What aggregation to use. Options: sum, mean, min, max
|
|
# aggregation = "mean"
|
|
|
|
## Instead of the top k largest metrics, return the bottom k lowest metrics
|
|
# bottomk = false
|
|
|
|
## The plugin assigns each metric a GroupBy tag generated from its name and
|
|
## tags. If this setting is different than "" the plugin will add a
|
|
## tag (which name will be the value of this setting) to each metric with
|
|
## the value of the calculated GroupBy tag. Useful for debugging
|
|
# add_groupby_tag = ""
|
|
|
|
## These settings provide a way to know the position of each metric in
|
|
## the top k. The 'add_rank_field' setting allows to specify for which
|
|
## fields the position is required. If the list is non empty, then a field
|
|
## will be added to each and every metric for each string present in this
|
|
## setting. This field will contain the ranking of the group that
|
|
## the metric belonged to when aggregated over that field.
|
|
## The name of the field will be set to the name of the aggregation field,
|
|
## suffixed with the string '_topk_rank'
|
|
# add_rank_fields = []
|
|
|
|
## These settings provide a way to know what values the plugin is generating
|
|
## when aggregating metrics. The 'add_agregate_field' setting allows to
|
|
## specify for which fields the final aggregation value is required. If the
|
|
## list is non empty, then a field will be added to each every metric for
|
|
## each field present in this setting. This field will contain
|
|
## the computed aggregation for the group that the metric belonged to when
|
|
## aggregated over that field.
|
|
## The name of the field will be set to the name of the aggregation field,
|
|
## suffixed with the string '_topk_aggregate'
|
|
# add_aggregate_fields = []
|
|
`
|
|
|
|
type MetricAggregation struct {
|
|
groupbykey string
|
|
values map[string]float64
|
|
}
|
|
|
|
func sortMetrics(metrics []MetricAggregation, field string, reverse bool) {
|
|
less := func(i, j int) bool {
|
|
iv := metrics[i].values[field]
|
|
jv := metrics[j].values[field]
|
|
if iv < jv {
|
|
return true
|
|
} else {
|
|
return false
|
|
}
|
|
}
|
|
|
|
if reverse {
|
|
sort.SliceStable(metrics, less)
|
|
} else {
|
|
sort.SliceStable(metrics, func(i, j int) bool { return !less(i, j) })
|
|
}
|
|
}
|
|
|
|
func (t *TopK) SampleConfig() string {
|
|
return sampleConfig
|
|
}
|
|
|
|
func (t *TopK) Reset() {
|
|
t.cache = make(map[string][]telegraf.Metric)
|
|
t.lastAggregation = time.Now()
|
|
}
|
|
|
|
func (t *TopK) Description() string {
|
|
return "Print all metrics that pass through this filter."
|
|
}
|
|
|
|
func (t *TopK) generateGroupByKey(m telegraf.Metric) (string, error) {
|
|
// Create the filter.Filter objects if they have not been created
|
|
if t.tagsGlobs == nil && len(t.GroupBy) > 0 {
|
|
var err error
|
|
t.tagsGlobs, err = filter.Compile(t.GroupBy)
|
|
if err != nil {
|
|
return "", fmt.Errorf("could not compile pattern: %v %v", t.GroupBy, err)
|
|
}
|
|
}
|
|
|
|
groupkey := m.Name() + "&"
|
|
|
|
if len(t.GroupBy) > 0 {
|
|
tags := m.Tags()
|
|
keys := make([]string, 0, len(tags))
|
|
for tag, value := range tags {
|
|
if t.tagsGlobs.Match(tag) {
|
|
keys = append(keys, tag+"="+value+"&")
|
|
}
|
|
}
|
|
// Sorting the selected tags is necessary because dictionaries
|
|
// do not ensure any specific or deterministic ordering
|
|
sort.SliceStable(keys, func(i, j int) bool { return keys[i] < keys[j] })
|
|
for _, str := range keys {
|
|
groupkey += str
|
|
}
|
|
}
|
|
|
|
return groupkey, nil
|
|
}
|
|
|
|
func (t *TopK) groupBy(m telegraf.Metric) {
|
|
// Generate the metric group key
|
|
groupkey, err := t.generateGroupByKey(m)
|
|
if err != nil {
|
|
// If we could not generate the groupkey, fail hard
|
|
// by dropping this and all subsequent metrics
|
|
log.Printf("E! [processors.topk]: could not generate group key: %v", err)
|
|
return
|
|
}
|
|
|
|
// Initialize the key with an empty list if necessary
|
|
if _, ok := t.cache[groupkey]; !ok {
|
|
t.cache[groupkey] = make([]telegraf.Metric, 0, 10)
|
|
}
|
|
|
|
// Append the metric to the corresponding key list
|
|
t.cache[groupkey] = append(t.cache[groupkey], m)
|
|
|
|
// Add the generated groupby key tag to the metric if requested
|
|
if t.AddGroupByTag != "" {
|
|
m.AddTag(t.AddGroupByTag, groupkey)
|
|
}
|
|
}
|
|
|
|
func (t *TopK) Apply(in ...telegraf.Metric) []telegraf.Metric {
|
|
// Init any internal datastructures that are not initialized yet
|
|
if t.rankFieldSet == nil {
|
|
t.rankFieldSet = make(map[string]bool)
|
|
for _, f := range t.AddRankFields {
|
|
t.rankFieldSet[f] = true
|
|
}
|
|
}
|
|
if t.aggFieldSet == nil {
|
|
t.aggFieldSet = make(map[string]bool)
|
|
for _, f := range t.AddAggregateFields {
|
|
if f != "" {
|
|
t.aggFieldSet[f] = true
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add the metrics received to our internal cache
|
|
for _, m := range in {
|
|
// When tracking metrics this plugin could deadlock the input by
|
|
// holding undelivered metrics while the input waits for metrics to be
|
|
// delivered. Instead, treat all handled metrics as delivered and
|
|
// produced metrics as untracked in a similar way to aggregators.
|
|
m.Drop()
|
|
|
|
// Check if the metric has any of the fields over which we are aggregating
|
|
hasField := false
|
|
for _, f := range t.Fields {
|
|
if m.HasField(f) {
|
|
hasField = true
|
|
break
|
|
}
|
|
}
|
|
if !hasField {
|
|
continue
|
|
}
|
|
|
|
// Add the metric to the internal cache
|
|
t.groupBy(m)
|
|
}
|
|
|
|
// If enough time has passed
|
|
elapsed := time.Since(t.lastAggregation)
|
|
if elapsed >= t.Period.Duration {
|
|
return t.push()
|
|
}
|
|
|
|
return []telegraf.Metric{}
|
|
}
|
|
|
|
func min(a, b int) int {
|
|
if a > b {
|
|
return b
|
|
}
|
|
return a
|
|
}
|
|
|
|
func convert(in interface{}) (float64, bool) {
|
|
switch v := in.(type) {
|
|
case float64:
|
|
return v, true
|
|
case int64:
|
|
return float64(v), true
|
|
case uint64:
|
|
return float64(v), true
|
|
default:
|
|
return 0, false
|
|
}
|
|
}
|
|
|
|
func (t *TopK) push() []telegraf.Metric {
|
|
// Generate aggregations list using the selected fields
|
|
aggregations := make([]MetricAggregation, 0, 100)
|
|
aggregator, err := t.getAggregationFunction(t.Aggregation)
|
|
if err != nil {
|
|
// If we could not generate the aggregation
|
|
// function, fail hard by dropping all metrics
|
|
log.Printf("E! [processors.topk]: %v", err)
|
|
return []telegraf.Metric{}
|
|
}
|
|
for k, ms := range t.cache {
|
|
aggregations = append(aggregations, MetricAggregation{groupbykey: k, values: aggregator(ms, t.Fields)})
|
|
}
|
|
|
|
// The return value that will hold the returned metrics
|
|
var ret []telegraf.Metric = make([]telegraf.Metric, 0, 0)
|
|
|
|
// Get the top K metrics for each field and add them to the return value
|
|
addedKeys := make(map[string]bool)
|
|
for _, field := range t.Fields {
|
|
|
|
// Sort the aggregations
|
|
sortMetrics(aggregations, field, t.Bottomk)
|
|
|
|
// Create a one dimensional list with the top K metrics of each key
|
|
for i, ag := range aggregations[0:min(t.K, len(aggregations))] {
|
|
// Check whether of not we need to add fields of tags to the selected metrics
|
|
if len(t.aggFieldSet) != 0 || len(t.rankFieldSet) != 0 || t.AddGroupByTag != "" {
|
|
for _, m := range t.cache[ag.groupbykey] {
|
|
// Add the aggregation final value if requested
|
|
_, addAggField := t.aggFieldSet[field]
|
|
if addAggField && m.HasField(field) {
|
|
m.AddField(field+"_topk_aggregate", ag.values[field])
|
|
}
|
|
|
|
// Add the rank relative to the current field if requested
|
|
_, addRankField := t.rankFieldSet[field]
|
|
if addRankField && m.HasField(field) {
|
|
m.AddField(field+"_topk_rank", i+1)
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add metrics if we have not already appended them to the return value
|
|
_, ok := addedKeys[ag.groupbykey]
|
|
if !ok {
|
|
ret = append(ret, t.cache[ag.groupbykey]...)
|
|
addedKeys[ag.groupbykey] = true
|
|
}
|
|
}
|
|
}
|
|
|
|
t.Reset()
|
|
|
|
result := make([]telegraf.Metric, 0, len(ret))
|
|
for _, m := range ret {
|
|
copy, err := metric.New(m.Name(), m.Tags(), m.Fields(), m.Time(), m.Type())
|
|
if err != nil {
|
|
continue
|
|
}
|
|
result = append(result, copy)
|
|
}
|
|
|
|
return result
|
|
}
|
|
|
|
// Function that generates the aggregation functions
|
|
func (t *TopK) getAggregationFunction(aggOperation string) (func([]telegraf.Metric, []string) map[string]float64, error) {
|
|
// This is a function aggregates a set of metrics using a given aggregation function
|
|
var aggregator = func(ms []telegraf.Metric, fields []string, f func(map[string]float64, float64, string)) map[string]float64 {
|
|
agg := make(map[string]float64)
|
|
// Compute the sums of the selected fields over all the measurements collected for this metric
|
|
for _, m := range ms {
|
|
for _, field := range fields {
|
|
fieldVal, ok := m.Fields()[field]
|
|
if !ok {
|
|
continue // Skip if this metric doesn't have this field set
|
|
}
|
|
val, ok := convert(fieldVal)
|
|
if !ok {
|
|
log.Printf("Cannot convert value '%s' from metric '%s' with tags '%s'",
|
|
m.Fields()[field], m.Name(), m.Tags())
|
|
continue
|
|
}
|
|
f(agg, val, field)
|
|
}
|
|
}
|
|
return agg
|
|
}
|
|
|
|
switch aggOperation {
|
|
case "sum":
|
|
return func(ms []telegraf.Metric, fields []string) map[string]float64 {
|
|
sum := func(agg map[string]float64, val float64, field string) {
|
|
agg[field] += val
|
|
}
|
|
return aggregator(ms, fields, sum)
|
|
}, nil
|
|
|
|
case "min":
|
|
return func(ms []telegraf.Metric, fields []string) map[string]float64 {
|
|
min := func(agg map[string]float64, val float64, field string) {
|
|
// If this field has not been set, set it to the maximum float64
|
|
_, ok := agg[field]
|
|
if !ok {
|
|
agg[field] = math.MaxFloat64
|
|
}
|
|
|
|
// Check if we've found a new minimum
|
|
if agg[field] > val {
|
|
agg[field] = val
|
|
}
|
|
}
|
|
return aggregator(ms, fields, min)
|
|
}, nil
|
|
|
|
case "max":
|
|
return func(ms []telegraf.Metric, fields []string) map[string]float64 {
|
|
max := func(agg map[string]float64, val float64, field string) {
|
|
// If this field has not been set, set it to the minimum float64
|
|
_, ok := agg[field]
|
|
if !ok {
|
|
agg[field] = -math.MaxFloat64
|
|
}
|
|
|
|
// Check if we've found a new maximum
|
|
if agg[field] < val {
|
|
agg[field] = val
|
|
}
|
|
}
|
|
return aggregator(ms, fields, max)
|
|
}, nil
|
|
|
|
case "mean":
|
|
return func(ms []telegraf.Metric, fields []string) map[string]float64 {
|
|
mean := make(map[string]float64)
|
|
meanCounters := make(map[string]float64)
|
|
// Compute the sums of the selected fields over all the measurements collected for this metric
|
|
for _, m := range ms {
|
|
for _, field := range fields {
|
|
fieldVal, ok := m.Fields()[field]
|
|
if !ok {
|
|
continue // Skip if this metric doesn't have this field set
|
|
}
|
|
val, ok := convert(fieldVal)
|
|
if !ok {
|
|
log.Printf("Cannot convert value '%s' from metric '%s' with tags '%s'",
|
|
m.Fields()[field], m.Name(), m.Tags())
|
|
continue
|
|
}
|
|
mean[field] += val
|
|
meanCounters[field] += 1
|
|
}
|
|
}
|
|
// Divide by the number of recorded measurements collected for every field
|
|
noMeasurementsFound := true // Canary to check if no field with values was found, so we can return nil
|
|
for k := range mean {
|
|
if meanCounters[k] == 0 {
|
|
mean[k] = 0
|
|
continue
|
|
}
|
|
mean[k] = mean[k] / meanCounters[k]
|
|
noMeasurementsFound = noMeasurementsFound && false
|
|
}
|
|
|
|
if noMeasurementsFound {
|
|
return nil
|
|
}
|
|
return mean
|
|
}, nil
|
|
|
|
default:
|
|
return nil, fmt.Errorf("Unknown aggregation function '%s'. No metrics will be processed", t.Aggregation)
|
|
}
|
|
}
|
|
|
|
func init() {
|
|
processors.Add("topk", func() telegraf.Processor {
|
|
return New()
|
|
})
|
|
}
|